L10a123: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 10 |  | 
  n = 10 |  | 
||
t =   | 
  t = a |  | 
||
k = 123 |  | 
  k = 123 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,3,-4:10,-2,5,-8,4,-3,6,-7,8,-5,7,-6/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,3,-4:10,-2,5,-8,4,-3,6,-7,8,-5,7,-6/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 43: | Line 52: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | 
||
| ⚫ | |||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, Alternating, 123]]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14],   | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 123]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14],   | 
  |||
  X[18, 12, 19, 11], X[20, 15, 9, 16], X[16, 19, 17, 20],   | 
    X[18, 12, 19, 11], X[20, 15, 9, 16], X[16, 19, 17, 20],   | 
||
  X[12, 18, 13, 17], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></  | 
    X[12, 18, 13, 17], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
  {10, -2, 5, -8, 4, -3, 6, -7, 8, -5, 7, -6}]</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[7, {1, -2, -3, -4, -3, -5, -4, -3, -6, -5, 4, -3, 2, -1, -3, 2, -4,   | 
||
| ⚫ | |||
   -3, 2, 5, 4, -3, 6, 5, 4, -3}]</nowiki></pre></td></tr>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 123]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L10a123_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
</table>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, Alternating, 123]]</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-2</nowiki></pre></td></tr>  | 
||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 123]][q]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L10a123_ML.gif]]</td></tr><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-2</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
  |||
| ⚫ | |||
-3 + q   - -- + -- - -- + -- - -- + -- - -- + - + q  | 
  -3 + q   - -- + -- - -- + -- - -- + -- - -- + - + q  | 
||
            8    7    6    5    4    3    2   q  | 
              8    7    6    5    4    3    2   q  | 
||
           q    q    q    q    q    q    q</nowiki></  | 
             q    q    q    q    q    q    q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
| ⚫ | |||
-1 + q    + --- + --- + --- + --- - q    + --- - q    + --- + q    +   | 
  -1 + q    + --- + --- + --- + --- - q    + --- - q    + --- + q    +   | 
||
             28    26    24    22           16           12  | 
               28    26    24    22           16           12  | 
||
| Line 116: | Line 88: | ||
  -- + -- - q   + -- - q  + q  | 
    -- + -- - q   + -- - q  + q  | 
||
   8    6          2  | 
     8    6          2  | 
||
  q    q          q</nowiki></  | 
    q    q          q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
| ⚫ | |||
   2      4      6      8   a    3 a    4 a    3 a    a      2  | 
     2      4      6      8   a    3 a    4 a    3 a    a      2  | 
||
3 a  - 7 a  + 8 a  - 4 a  + -- - ---- + ---- - ---- + --- + z  +   | 
  3 a  - 7 a  + 8 a  - 4 a  + -- - ---- + ---- - ---- + --- + z  +   | 
||
| Line 130: | Line 97: | ||
     2  2      4  2      6  2    2  4      4  4  | 
       2  2      4  2      6  2    2  4      4  4  | 
||
  2 a  z  - 6 a  z  + 6 a  z  - a  z  - 3 a  z</nowiki></  | 
    2 a  z  - 6 a  z  + 6 a  z  - a  z  - 3 a  z</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
| ⚫ | |||
    2       4       6       8      10   a    3 a    4 a    3 a    a  | 
      2       4       6       8      10   a    3 a    4 a    3 a    a  | 
||
-4 a  - 14 a  - 21 a  - 14 a  - 4 a   + -- + ---- + ---- + ---- + --- -   | 
  -4 a  - 14 a  - 21 a  - 14 a  - 4 a   + -- + ---- + ---- + ---- + --- -   | 
||
| Line 164: | Line 126: | ||
   7  9  | 
     7  9  | 
||
  a  z</nowiki></  | 
    a  z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 123]][q, t]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
| ⚫ | |||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +   | 
  -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +   | 
||
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5  | 
   3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5  | 
||
| Line 182: | Line 139: | ||
           3  2  | 
             3  2  | 
||
  2 q t + q  t</nowiki></  | 
    2 q t + q  t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Revision as of 17:44, 2 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a123's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X18,12,19,11 X20,15,9,16 X16,19,17,20 X12,18,13,17 X2536 X4,9,1,10 | 
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -4}, {10, -2, 5, -8, 4, -3, 6, -7, 8, -5, 7, -6} | 
| A Braid Representative | ||||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -2 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



