L11a496: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 496 | |
k = 496 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:8,-7,9,-6:10,-1,3,-5,4,-8,7,-2,11,-3,5,-4,6,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:8,-7,9,-6:10,-1,3,-5,4,-8,7,-2,11,-3,5,-4,6,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 496]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[16, 10, 17, 9], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 496]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[16, 10, 17, 9], |
|||
X[8, 16, 9, 15], X[22, 17, 19, 18], X[20, 12, 21, 11], |
X[8, 16, 9, 15], X[22, 17, 19, 18], X[20, 12, 21, 11], |
||
X[10, 20, 11, 19], X[18, 21, 5, 22], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[10, 20, 11, 19], X[18, 21, 5, 22], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{10, -1, 3, -5, 4, -8, 7, -2, 11, -3, 5, -4, 6, -9}]</nowiki></ |
{10, -1, 3, -5, 4, -8, 7, -2, 11, -3, 5, -4, 6, -9}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 1, 1, 1, -3, -2, 1, 1, -2, 3, -2, 1}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 496]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a496_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 496]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a496_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 496]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 7 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 496]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
6 + q - - - 7 q + 11 q - 11 q + 13 q - 11 q + 8 q - 6 q + |
6 + q - - - 7 q + 11 q - 11 q + 13 q - 11 q + 8 q - 6 q + |
||
q |
q |
||
8 9 |
8 9 |
||
3 q - q</nowiki></ |
3 q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
5 + q + q + -- + 4 q + 7 q + 5 q + 4 q + 5 q - q + 2 q - |
5 + q + q + -- + 4 q + 7 q + 5 q + 4 q + 5 q - q + 2 q - |
||
2 |
2 |
||
| Line 117: | Line 84: | ||
16 18 20 22 24 26 |
16 18 20 22 24 26 |
||
3 q - 2 q - q - 2 q + q - q</nowiki></ |
3 q - 2 q - q - 2 q + q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
4 13 14 2 1 4 5 2 5 z 18 z |
4 13 14 2 1 4 5 2 5 z 18 z |
||
5 - -- + -- - -- + -- - ----- + ----- - ----- + 4 z - ---- + ----- - |
5 - -- + -- - -- + -- - ----- + ----- - ----- + 4 z - ---- + ----- - |
||
| Line 134: | Line 96: | ||
----- + z - ---- + ----- - ----- - -- + ---- - ---- + -- |
----- + z - ---- + ----- - ----- - -- + ---- - ---- + -- |
||
2 6 4 2 6 4 2 4 |
2 6 4 2 6 4 2 4 |
||
a a a a a a a a</nowiki></ |
a a a a a a a a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
9 + -- + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + |
9 + -- + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + |
||
6 4 2 2 6 2 4 2 2 2 7 5 3 |
6 4 2 2 6 2 4 2 2 2 7 5 3 |
||
| Line 174: | Line 131: | ||
---- + z + ---- + ----- + ---- + ---- + ---- + ---- + --- + --- |
---- + z + ---- + ----- + ---- + ---- + ---- + ---- + --- + --- |
||
a 6 4 2 5 3 a 4 2 |
a 6 4 2 5 3 a 4 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 496]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 1 1 5 q 2 q 5 q 5 |
3 5 1 1 1 5 q 2 q 5 q 5 |
||
9 q + 6 q + ----- + ----- + ---- + ---- + -- + --- + ---- + 6 q t + |
9 q + 6 q + ----- + ----- + ---- + ---- + -- + --- + ---- + 6 q t + |
||
| Line 191: | Line 143: | ||
13 4 13 5 15 5 15 6 17 6 19 7 |
13 4 13 5 15 5 15 6 17 6 19 7 |
||
4 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
4 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Revision as of 17:53, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a496's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X8,16,9,15 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {8, -7, 9, -6}, {10, -1, 3, -5, 4, -8, 7, -2, 11, -3, 5, -4, 6, -9} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3)^4-t(3)^3+t(3)^2-t(3)+1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^9+3 q^8-6 q^7+8 q^6-11 q^5+13 q^4-11 q^3+11 q^2-7 q+6-2 q^{-1} + q^{-2} }[/math] (db) |
| Signature | 4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-17 z^2 a^{-2} +18 z^2 a^{-4} -5 z^2 a^{-6} +4 z^2-14 a^{-2} +13 a^{-4} -4 a^{-6} +5-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +3 z^8 a^{-2} +11 z^8 a^{-4} +9 z^8 a^{-6} +z^8-9 z^7 a^{-1} -25 z^7 a^{-3} -7 z^7 a^{-5} +9 z^7 a^{-7} -34 z^6 a^{-2} -60 z^6 a^{-4} -24 z^6 a^{-6} +8 z^6 a^{-8} -6 z^6+10 z^5 a^{-1} +10 z^5 a^{-3} -22 z^5 a^{-5} -16 z^5 a^{-7} +6 z^5 a^{-9} +70 z^4 a^{-2} +88 z^4 a^{-4} +19 z^4 a^{-6} -10 z^4 a^{-8} +3 z^4 a^{-10} +14 z^4+4 z^3 a^{-1} +34 z^3 a^{-3} +41 z^3 a^{-5} +5 z^3 a^{-7} -5 z^3 a^{-9} +z^3 a^{-11} -57 z^2 a^{-2} -57 z^2 a^{-4} -14 z^2 a^{-6} +2 z^2 a^{-8} -16 z^2-12 z a^{-1} -31 z a^{-3} -25 z a^{-5} -4 z a^{-7} +2 z a^{-9} +23 a^{-2} +22 a^{-4} +7 a^{-6} +9+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



