L10a61: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 61 | |
k = 61 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-8,9,-6:4,-1,3,-2,6,-10,5,-9,8,-7,10,-5,7,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-8,9,-6:4,-1,3,-2,6,-10,5,-9,8,-7,10,-5,7,-3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 43: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 61]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 61]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
||
| Line 58: | Line 66: | ||
{4, -1, 3, -2, 6, -10, 5, -9, 8, -7, 10, -5, 7, -3}]</nowiki></pre></td></tr> |
{4, -1, 3, -2, 6, -10, 5, -9, 8, -7, 10, -5, 7, -3}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, Alternating, 61]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, 2, 3, 2, 4, 3, 2, -1, 5, 4, -3, 2, -3, 2, -4, -3, 2, -5, |
|||
| ⚫ | |||
-4, -3, 2}]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 61]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a61_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, Alternating, 61]]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3/2 5/2 7/2 9/2 |
|||
-(-------) + 3 Sqrt[q] - 7 q + 10 q - 14 q + 14 q - |
-(-------) + 3 Sqrt[q] - 7 q + 10 q - 14 q + 14 q - |
||
Sqrt[q] |
Sqrt[q] |
||
| Line 68: | Line 80: | ||
11/2 13/2 15/2 17/2 19/2 |
11/2 13/2 15/2 17/2 19/2 |
||
14 q + 11 q - 7 q + 4 q - q</nowiki></pre></td></tr> |
14 q + 11 q - 7 q + 4 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, Alternating, 61]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 6 8 10 12 14 16 18 |
||
-1 + q + 3 q - 2 q + 4 q + 2 q + q + 4 q - q + 3 q - |
-1 + q + 3 q - 2 q + 4 q + 2 q + q + 4 q - q + 3 q - |
||
20 22 24 26 30 |
20 22 24 26 30 |
||
2 q - 2 q + q - 3 q + q</nowiki></pre></td></tr> |
2 q - 2 q + q - 3 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, Alternating, 61]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 |
||
1 3 2 z 4 z 6 z 3 z z 3 z 5 z z |
1 3 2 z 4 z 6 z 3 z z 3 z 5 z z |
||
---- - ---- + ---- - -- + --- - --- + --- + - + ---- - ---- + -- - |
---- - ---- + ---- - -- + --- - --- + --- + - + ---- - ---- + -- - |
||
| Line 86: | Line 98: | ||
5 3 |
5 3 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, Alternating, 61]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 3 1 3 2 2 z 10 z 15 z 6 z z |
||
a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- + --- - - - |
a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- + --- - - - |
||
6 4 7 5 3 9 7 5 3 a |
6 4 7 5 3 9 7 5 3 a |
||
| Line 115: | Line 127: | ||
7 5 3 8 6 4 7 5 |
7 5 3 8 6 4 7 5 |
||
a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 61]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
2 4 1 2 q 4 6 6 2 8 2 |
2 4 1 2 q 4 6 6 2 8 2 |
||
5 q + 3 q + ----- + - + -- + 6 q t + 4 q t + 8 q t + 7 q t + |
5 q + 3 q + ----- + - + -- + 6 q t + 4 q t + 8 q t + 7 q t + |
||
Revision as of 18:27, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a61's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X18,14,19,13 X6,12,1,11 X16,20,17,19 X4,16,5,15 X14,6,15,5 X12,18,13,17 |
| Gauss code | {1, -4, 2, -8, 9, -6}, {4, -1, 3, -2, 6, -10, 5, -9, 8, -7, 10, -5, 7, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(2)^4-t(2)^4+2 t(1)^2 t(2)^3-6 t(1) t(2)^3+3 t(2)^3-4 t(1)^2 t(2)^2+9 t(1) t(2)^2-4 t(2)^2+3 t(1)^2 t(2)-6 t(1) t(2)+2 t(2)-t(1)^2+t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{19/2}+4 q^{17/2}-7 q^{15/2}+11 q^{13/2}-14 q^{11/2}+14 q^{9/2}-14 q^{7/2}+10 q^{5/2}-7 q^{3/2}+3 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-3} -2 z^5 a^{-5} +z^3 a^{-1} -5 z^3 a^{-5} +3 z^3 a^{-7} +z a^{-1} +3 z a^{-3} -6 z a^{-5} +4 z a^{-7} -z a^{-9} +2 a^{-3} z^{-1} -3 a^{-5} z^{-1} + a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-11} -z^3 a^{-11} +4 z^6 a^{-10} -7 z^4 a^{-10} +3 z^2 a^{-10} +6 z^7 a^{-9} -10 z^5 a^{-9} +5 z^3 a^{-9} -2 z a^{-9} +4 z^8 a^{-8} +3 z^6 a^{-8} -18 z^4 a^{-8} +12 z^2 a^{-8} - a^{-8} +z^9 a^{-7} +14 z^7 a^{-7} -34 z^5 a^{-7} +28 z^3 a^{-7} -10 z a^{-7} + a^{-7} z^{-1} +8 z^8 a^{-6} -5 z^6 a^{-6} -13 z^4 a^{-6} +14 z^2 a^{-6} -3 a^{-6} +z^9 a^{-5} +13 z^7 a^{-5} -33 z^5 a^{-5} +32 z^3 a^{-5} -15 z a^{-5} +3 a^{-5} z^{-1} +4 z^8 a^{-4} -z^6 a^{-4} -7 z^4 a^{-4} +7 z^2 a^{-4} -3 a^{-4} +5 z^7 a^{-3} -9 z^5 a^{-3} +8 z^3 a^{-3} -6 z a^{-3} +2 a^{-3} z^{-1} +3 z^6 a^{-2} -5 z^4 a^{-2} +2 z^2 a^{-2} +z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



