Invariant Definition Table: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<tr> |
<tr> |
||
<th>Invariant name</th> |
<th>Invariant name</th> |
||
⚫ | |||
<th>KnotTheory</th> |
<th>KnotTheory</th> |
||
⚫ | |||
<th>ReadLivingston</th> |
|||
<th>ReadWiki</th> |
<th>ReadWiki</th> |
||
<th>Type</th> |
<th>Type</th> |
||
Line 12: | Line 11: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Crossings</td> |
<!-- Invariant name --> <td>Crossings</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Crossings</td> |
<!-- KnotTheory = --> <td>Crossings</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 21: | Line 19: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Knot Number</td> |
<!-- Invariant name --> <td>Knot Number</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>KnotNumber</td> |
<!-- KnotTheory = --> <td>KnotNumber</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 30: | Line 27: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Knotilus URL</td> |
<!-- Invariant name --> <td>Knotilus URL</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>KnotilusURL</td> |
<!-- KnotTheory = --> <td>KnotilusURL</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 39: | Line 35: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Next Knot</td> |
<!-- Invariant name --> <td>Next Knot</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>NextKnot</td> |
<!-- KnotTheory = --> <td>NextKnot</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 48: | Line 43: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Previous Knot</td> |
<!-- Invariant name --> <td>Previous Knot</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>PreviousKnot</td> |
<!-- KnotTheory = --> <td>PreviousKnot</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 57: | Line 51: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Gauss Code</td> |
<!-- Invariant name --> <td>Gauss Code</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>GaussCode</td> |
<!-- KnotTheory = --> <td>GaussCode</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>GaussCode</td> |
<!-- ReadWiki = --> <td>GaussCode</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 66: | Line 59: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Planar Diagram</td> |
<!-- Invariant name --> <td>Planar Diagram</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>PD</td> |
<!-- KnotTheory = --> <td>PD</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>PD</td> |
<!-- ReadWiki = --> <td>PD</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 75: | Line 67: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Dowker-Thistlethwaite Code</td> |
<!-- Invariant name --> <td>Dowker-Thistlethwaite Code</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>DTCode</td> |
<!-- KnotTheory = --> <td>DTCode</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>DTCode</td> |
<!-- ReadWiki = --> <td>DTCode</td> |
||
<!-- Type = --> <td>Knot Presentation</td> |
<!-- Type = --> <td>Knot Presentation</td> |
||
Line 84: | Line 75: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>SymmetryType</td> |
<!-- Invariant name --> <td>SymmetryType</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>SymmetryType</td> |
<!-- KnotTheory = --> <td>SymmetryType</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>SymmetryType</td> |
<!-- ReadWiki = --> <td>SymmetryType</td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 93: | Line 83: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>UnknottingNumber</td> |
<!-- Invariant name --> <td>UnknottingNumber</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 102: | Line 91: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>ThreeGenus</td> |
<!-- Invariant name --> <td>ThreeGenus</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>ThreeGenus</td> |
<!-- KnotTheory = --> <td>ThreeGenus</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 111: | Line 99: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>BridgeIndex</td> |
<!-- Invariant name --> <td>BridgeIndex</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>BridgeIndex</td> |
<!-- KnotTheory = --> <td>BridgeIndex</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 120: | Line 107: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>SuperBridgeIndex</td> |
<!-- Invariant name --> <td>SuperBridgeIndex</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 129: | Line 115: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>NakanishiIndex</td> |
<!-- Invariant name --> <td>NakanishiIndex</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 138: | Line 123: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Jones</td> |
<!-- Invariant name --> <td>Jones</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Jones[#1][q] & </td> |
<!-- KnotTheory = --> <td>Jones[#1][q] & </td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 147: | Line 131: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Alexander</td> |
<!-- Invariant name --> <td>Alexander</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 156: | Line 139: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Determinant</td> |
<!-- Invariant name --> <td>Determinant</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>KnotDet</td> |
<!-- KnotTheory = --> <td>KnotDet</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 165: | Line 147: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Signature</td> |
<!-- Invariant name --> <td>Signature</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>KnotSignature</td> |
<!-- KnotTheory = --> <td>KnotSignature</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 174: | Line 155: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Conway</td> |
<!-- Invariant name --> <td>Conway</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 183: | Line 163: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>HOMFLYPT</td> |
<!-- Invariant name --> <td>HOMFLYPT</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 192: | Line 171: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Kauffman</td> |
<!-- Invariant name --> <td>Kauffman</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 201: | Line 179: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Vassiliev2</td> |
<!-- Invariant name --> <td>Vassiliev2</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 210: | Line 187: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Vassiliev3</td> |
<!-- Invariant name --> <td>Vassiliev3</td> |
||
⚫ | |||
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
||
<!-- LivingstonTag = --> <td></td> |
|||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 219: | Line 195: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 227: | Line 203: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Topological 4-Genus</td> |
<!-- Invariant name --> <td>Topological 4-Genus</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 235: | Line 211: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 243: | Line 219: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Hyperbolic Volume</td> |
<!-- Invariant name --> <td>Hyperbolic Volume</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>volume</td> |
<!-- KnotInfoTag = --> <td>volume</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Hyperbolic Invariant</td> |
<!-- Type = --> <td>Hyperbolic Invariant</td> |
||
Line 251: | Line 227: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Conway Notation</td> |
<!-- Invariant name --> <td>Conway Notation</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>conway_notation</td> |
<!-- KnotInfoTag = --> <td>conway_notation</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Knot Presentation</td> |
<!-- Type = --> <td>Knot Presentation</td> |
||
Line 259: | Line 235: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Concordance Order</td> |
<!-- Invariant name --> <td>Concordance Order</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>concordance_order</td> |
<!-- KnotInfoTag = --> <td>concordance_order</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Concordance Invariant</td> |
<!-- Type = --> <td>Concordance Invariant</td> |
||
Line 267: | Line 243: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Algebraic Concordance Order</td> |
<!-- Invariant name --> <td>Algebraic Concordance Order</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td> |
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Concordance Invariant</td> |
<!-- Type = --> <td>Concordance Invariant</td> |
||
Line 275: | Line 251: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Ozsvath-Szabo Tau Invariant</td> |
<!-- Invariant name --> <td>Ozsvath-Szabo Tau Invariant</td> |
||
⚫ | |||
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td> |
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td> |
||
⚫ | |||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
Revision as of 19:50, 1 November 2005
Invariant name | KnotInfoTag | KnotTheory | ReadWiki | Type | WikiPage |
---|---|---|---|---|---|
Crossings | Crossings | Link Presentation | Crossings | ||
Knot Number | KnotNumber | Link Presentation | Number | ||
Knotilus URL | KnotilusURL | Navigation | KnotilusURL | ||
Next Knot | NextKnot | Knot | Navigation | Next_Knot | |
Previous Knot | PreviousKnot | Knot | Navigation | Previous_Knot | |
Gauss Code | GaussCode | GaussCode | Link Presentation | Gauss_Code | |
Planar Diagram | PD | PD | Link Presentation | PD_Presentation | |
Dowker-Thistlethwaite Code | DTCode | DTCode | Knot Presentation | DT_Code | |
SymmetryType | SymmetryType | SymmetryType | 3D Invariant | Symmetry_Type | |
UnknottingNumber | UnknottingNumber | 3D Invariant | Unknotting_Number | ||
ThreeGenus | ThreeGenus | 3D Invariant | 3-Genus | ||
BridgeIndex | BridgeIndex | 3D Invariant | Bridge_Index | ||
SuperBridgeIndex | SuperBridgeIndex | 3D Invariant | Super_Bridge_Index | ||
NakanishiIndex | NakanishiIndex | 3D Invariant | Nakanishi_Index | ||
Jones | Jones[#1][q] & | Polynomial Invariant | Jones_Polynomial | ||
Alexander | Alexander[#1][t] & | Polynomial Invariant | Alexander_Polynomial | ||
Determinant | KnotDet | Polynomial Invariant | Determinant | ||
Signature | KnotSignature | Polynomial Invariant | Signature | ||
Conway | Conway[#1][z] & | Polynomial Invariant | Conway_Polynomial | ||
HOMFLYPT | HOMFLYPT[#1][a, z] & | Polynomial Invariant | HOMFLYPT_Polynomial | ||
Kauffman | Kauffman[#1][a, z] & | Polynomial Invariant | Kauffman_Polynomial | ||
Vassiliev2 | Vassiliev[2] | Vassiliev Invariant | V_2 | ||
Vassiliev3 | Vassiliev[3] | Vassiliev Invariant | V_3 | ||
Smooth 4-Genus | smooth_4_genus | 4D Invariant | Smooth4Genus | ||
Topological 4-Genus | topological_4_genus | 4D Invariant | Topological4Genus | ||
Thurston-Bennequin Number | thurston_bennequin_number | 3D Invariant | ThurstonBennequinNumber | ||
Hyperbolic Volume | volume | Hyperbolic Invariant | HyperbolicVolume | ||
Conway Notation | conway_notation | Knot Presentation | ConwayNotation | ||
Concordance Order | concordance_order | Concordance Invariant | ConcordanceOrder | ||
Algebraic Concordance Order | concordance_order_algebraic | Concordance Invariant | AlgebraicConcordanceOrder | ||
Ozsvath-Szabo Tau Invariant | ozsvath_szabo_tau | 4D Invariant | TauInvariant |