Upload Queues: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
</pre> |
</pre> |
||
The expression evaluating to a list of knots is subjected a very strict sanity check before it's evaluated, to protect against malicious code. At the moment, all you can use is AllKnots, AllLink, and Take. In particular, you can't write the presumably quite useful <code>Select[AllKnots[14], BraidIndex[#]<=4&]</code>. |
The expression evaluating to a list of knots is subjected a very strict sanity check before it's evaluated, to protect against malicious code. At the moment, all you can use is AllKnots, AllLink, and Take. In particular, you can't write the presumably quite useful <code>Select[AllKnots[14], BraidIndex[#]<=4&]</code>. |
||
==ScottDataRobot Easy Queue== |
|||
{{:ScottDataRobot Easy Queue}} |
|||
==ScottDataRobot Queue== |
==ScottDataRobot Queue== |
Revision as of 18:09, 30 May 2006
This page keeps track of the progress of various robots uploading data to the KnotAtlas.
If you look at the source of this page, you'll see a line that says
{{ScottDataRobot Queue}}
This line 'transcludes' the page ScottDataRobot Queue, showing its contents here. You can edit it to control the ScottDataRobot. You can create new queues by creating a new page in the same format. There's no need to transclude it here, but perhaps you should, so it's easy to see what's going on. To start uploading data in a queue, say "YourDataRobot Queue", you'll need to login, using something like
CreateWikiConnection[ "http://katlas.math.toronto.edu/w/index.php", "YourDataRobot", "password" ]
and then issuing the command ProcessKnotAtlasUploadQueue["YourDataRobot Queue"]
.
The queue pages should contain one line for each task, in the form
*"Invariant Name", "Mathematica expression that evaluates to a list of knots"
The expression evaluating to a list of knots is subjected a very strict sanity check before it's evaluated, to protect against malicious code. At the moment, all you can use is AllKnots, AllLink, and Take. In particular, you can't write the presumably quite useful Select[AllKnots[14], BraidIndex[#]<=4&]
.
ScottDataRobot Easy Queue
ScottDataRobot Queue
- "Dowker-Thistlethwaite Code", "AllKnots[13]"
- "Dowker-Thistlethwaite Code", "AllKnots[14]"
- "Dowker-Thistlethwaite Code", "AllKnots[15]"
- "Dowker-Thistlethwaite Code", "AllKnots[16]"
- "HOMFLYPT", "AllKnots[13]"
- "HOMFLYPT", "AllKnots[14]"
- "HOMFLYPT", "AllKnots[15]"
- "Rational Khovanov Polynomial", "AllKnots[13, NonAlternating]"
- "Rational Khovanov Polynomial", "AllKnots[14, NonAlternating]"
- "Rational Khovanov Polynomial", "AllKnots[15, NonAlternating]"
- "Kauffman", "AllKnots[13]"
- "Kauffman", "AllKnots[14]"
- "Alexander", "AllKnots[13]"
- "Alexander", "AllKnots[14]"
- "Alexander", "AllKnots[15]"
- "Signature", "AllKnots[13]"
- "Determinant", "AllKnots[13]"
Completed Work
- "Rational Khovanov Polynomial", "AllKnots[12, NonAlternating]"
- "Kauffman", "AllKnots[12]"
- "HOMFLYPT", "AllKnots[12]"
- "HOMFLYPT", "TorusKnots[17]"
- "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "Alexander", "AllKnots[12]"
- "QuantumInvariant/A1/6", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/6", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A3/1,0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/8", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A3/0,1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "Signature", "AllKnots[12]"
- "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
- "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
- "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A2/2,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/D4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "Determinant", "AllKnots[12]"
- "QuantumInvariant/A1/7", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=6&]"
- "QuantumInvariant/D4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A2/1,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/D4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/5", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=7&]"
- "QuantumInvariant/A3/0,1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A3/1,0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/G2/0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/5", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A2/2,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/B2/0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
- "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
- "QuantumInvariant/A2/1,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
- "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=6&]"