Invariant Definition Table: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
<th>KnotInfoTag</th>
<th>KnotInfoTag</th>
<th>KnotTheory</th>
<th>KnotTheory</th>
<th>KnotTheorySetter</th>
<th>ReadWiki</th>
<th>ReadWiki</th>
<th>Type</th>
<th>Type</th>
Line 13: Line 14:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Crossings</td>
<!-- KnotTheory = --> <td>Crossings</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 21: Line 23:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotNumber</td>
<!-- KnotTheory = --> <td>KnotNumber</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 29: Line 32:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotilusURL</td>
<!-- KnotTheory = --> <td>KnotilusURL</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 37: Line 41:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>NextKnot</td>
<!-- KnotTheory = --> <td>NextKnot</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 45: Line 50:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>PreviousKnot</td>
<!-- KnotTheory = --> <td>PreviousKnot</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 53: Line 59:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>GaussCode</td>
<!-- KnotTheory = --> <td>GaussCode</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>GaussCode</td>
<!-- ReadWiki = --> <td>GaussCode</td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 61: Line 68:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>PD</td>
<!-- KnotTheory = --> <td>PD</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>PD</td>
<!-- ReadWiki = --> <td>PD</td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 69: Line 77:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>DTCode</td>
<!-- KnotTheory = --> <td>DTCode</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>DTCode</td>
<!-- ReadWiki = --> <td>DTCode</td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- Type = --> <td>Knot Presentation</td>
Line 77: Line 86:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>SymmetryType</td>
<!-- KnotTheory = --> <td>SymmetryType</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>SymmetryType</td>
<!-- ReadWiki = --> <td>SymmetryType</td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 85: Line 95:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>UnknottingNumber</td>
<!-- KnotTheory = --> <td>UnknottingNumber</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 93: Line 104:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>ThreeGenus</td>
<!-- KnotTheory = --> <td>ThreeGenus</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 101: Line 113:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>ConcordanceGenus</td>
<!-- KnotTheory = --> <td>ConcordanceGenus</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 109: Line 122:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>BridgeIndex</td>
<!-- KnotTheory = --> <td>BridgeIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 117: Line 131:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>SuperBridgeIndex</td>
<!-- KnotTheory = --> <td>SuperBridgeIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 125: Line 140:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>NakanishiIndex</td>
<!-- KnotTheory = --> <td>NakanishiIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 142: Line 158:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td>
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 150: Line 167:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td>
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 158: Line 176:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotDet</td>
<!-- KnotTheory = --> <td>KnotDet</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 166: Line 185:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotSignature</td>
<!-- KnotTheory = --> <td>KnotSignature</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 174: Line 194:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Conway[#1][z] & </td>
<!-- KnotTheory = --> <td>Conway[#1][z] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 182: Line 203:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td>
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 190: Line 212:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td>
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 198: Line 221:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 206: Line 230:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Vassiliev[2]</td>
<!-- KnotTheory = --> <td>Vassiliev[2]</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Vassiliev Invariant</td>
<!-- Type = --> <td>Vassiliev Invariant</td>
Line 214: Line 239:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Vassiliev[3]</td>
<!-- KnotTheory = --> <td>Vassiliev[3]</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Vassiliev Invariant</td>
<!-- Type = --> <td>Vassiliev Invariant</td>
Line 222: Line 248:
<!-- KnotInfoTag = --> <td>smooth_4_genus</td>
<!-- KnotInfoTag = --> <td>smooth_4_genus</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 230: Line 257:
<!-- KnotInfoTag = --> <td>topological_4_genus</td>
<!-- KnotInfoTag = --> <td>topological_4_genus</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 238: Line 266:
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td>
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 246: Line 275:
<!-- KnotInfoTag = --> <td>volume</td>
<!-- KnotInfoTag = --> <td>volume</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Hyperbolic Invariant</td>
<!-- Type = --> <td>Hyperbolic Invariant</td>
Line 254: Line 284:
<!-- KnotInfoTag = --> <td>conway_notation</td>
<!-- KnotInfoTag = --> <td>conway_notation</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- Type = --> <td>Knot Presentation</td>
Line 262: Line 293:
<!-- KnotInfoTag = --> <td>concordance_order</td>
<!-- KnotInfoTag = --> <td>concordance_order</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Concordance Invariant</td>
<!-- Type = --> <td>Concordance Invariant</td>
Line 270: Line 302:
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td>
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Concordance Invariant</td>
<!-- Type = --> <td>Concordance Invariant</td>
Line 278: Line 311:
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td>
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 286: Line 320:
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td>
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 294: Line 329:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td>
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 302: Line 338:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td></td>
<!-- Type = --> <td></td>

Revision as of 09:28, 23 June 2006

Stop hand.png This page is for experts only!
This page stores the definitions of knot invariants understood by ManagingKnotData.m. Please don't edit it without understanding how that program works, and having read Expert Mode Editing.
Invariant name KnotInfoTag KnotTheory KnotTheorySetter ReadWiki Type WikiPage
Crossings Crossings Link Presentation Crossings
Knot Number KnotNumber Link Presentation Number
Knotilus URL KnotilusURL Navigation KnotilusURL
Next Knot NextKnot Knot Navigation Next_Knot
Previous Knot PreviousKnot Knot Navigation Previous_Knot
Gauss Code GaussCode GaussCode Link Presentation Gauss_Code
Planar Diagram PD PD Link Presentation PD_Presentation
Dowker-Thistlethwaite Code DTCode DTCode Knot Presentation DT_Code
SymmetryType SymmetryType SymmetryType 3D Invariant Symmetry_Type
UnknottingNumber UnknottingNumber 3D Invariant Unknotting_Number
ThreeGenus ThreeGenus 3D Invariant 3-Genus
ConcordanceGenus ConcordanceGenus 3D Invariant ConcordanceGenus
BridgeIndex BridgeIndex 3D Invariant Bridge_Index
SuperBridgeIndex SuperBridgeIndex 3D Invariant Super_Bridge_Index
NakanishiIndex NakanishiIndex 3D Invariant Nakanishi_Index
Jones Jones[#1][q] & Jones[#1] = Function[{q}, #2];& Polynomial Invariant Jones_Polynomial
Alexander Alexander[#1][t] & Polynomial Invariant Alexander_Polynomial
Multivariable Alexander MultivariableAlexander[#1][t] & Polynomial Invariant Multivariable_Alexander
Determinant KnotDet Polynomial Invariant Determinant
Signature KnotSignature Polynomial Invariant Signature
Conway Conway[#1][z] & Polynomial Invariant Conway_Polynomial
HOMFLYPT HOMFLYPT[#1][a, z] & Polynomial Invariant HOMFLYPT_Polynomial
Kauffman Kauffman[#1][a, z] & Polynomial Invariant Kauffman_Polynomial
Khovanov-Rozansky Polynomial Polynomial Invariant Khovanov_Rozansky_Polynomial
Vassiliev2 Vassiliev[2] Vassiliev Invariant V_2
Vassiliev3 Vassiliev[3] Vassiliev Invariant V_3
Smooth 4-Genus smooth_4_genus 4D Invariant Smooth4Genus
Topological 4-Genus topological_4_genus 4D Invariant Topological4Genus
Thurston-Bennequin Number thurston_bennequin_number 3D Invariant ThurstonBennequinNumber
Hyperbolic Volume volume Hyperbolic Invariant HyperbolicVolume
Conway Notation conway_notation Knot Presentation Conway Notation
Concordance Order concordance_order Concordance Invariant ConcordanceOrder
Algebraic Concordance Order concordance_order_algebraic Concordance Invariant AlgebraicConcordanceOrder
Ozsvath-Szabo Tau Invariant ozsvath_szabo_tau 4D Invariant TauInvariant
Khovanov s-Invariant khovanov_s_invariant 4D Invariant s-Invariant
Rational Khovanov Polynomial Kh[#1][q, t] & Polynomial Invariant Rational_Khovanov_Polynomial
A-polynomial A-polynomial