Invariant Definition Table: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<th>KnotInfoTag</th> |
<th>KnotInfoTag</th> |
||
<th>KnotTheory</th> |
<th>KnotTheory</th> |
||
<th>KnotTheorySetter</th> |
|||
<th>ReadWiki</th> |
<th>ReadWiki</th> |
||
<th>Type</th> |
<th>Type</th> |
||
Line 13: | Line 14: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Crossings</td> |
<!-- KnotTheory = --> <td>Crossings</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 21: | Line 23: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>KnotNumber</td> |
<!-- KnotTheory = --> <td>KnotNumber</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 29: | Line 32: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>KnotilusURL</td> |
<!-- KnotTheory = --> <td>KnotilusURL</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 37: | Line 41: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>NextKnot</td> |
<!-- KnotTheory = --> <td>NextKnot</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 45: | Line 50: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>PreviousKnot</td> |
<!-- KnotTheory = --> <td>PreviousKnot</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 53: | Line 59: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>GaussCode</td> |
<!-- KnotTheory = --> <td>GaussCode</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>GaussCode</td> |
<!-- ReadWiki = --> <td>GaussCode</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 61: | Line 68: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>PD</td> |
<!-- KnotTheory = --> <td>PD</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>PD</td> |
<!-- ReadWiki = --> <td>PD</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 69: | Line 77: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>DTCode</td> |
<!-- KnotTheory = --> <td>DTCode</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>DTCode</td> |
<!-- ReadWiki = --> <td>DTCode</td> |
||
<!-- Type = --> <td>Knot Presentation</td> |
<!-- Type = --> <td>Knot Presentation</td> |
||
Line 77: | Line 86: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>SymmetryType</td> |
<!-- KnotTheory = --> <td>SymmetryType</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td>SymmetryType</td> |
<!-- ReadWiki = --> <td>SymmetryType</td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 85: | Line 95: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 93: | Line 104: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>ThreeGenus</td> |
<!-- KnotTheory = --> <td>ThreeGenus</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 101: | Line 113: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>ConcordanceGenus</td> |
<!-- KnotTheory = --> <td>ConcordanceGenus</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 109: | Line 122: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>BridgeIndex</td> |
<!-- KnotTheory = --> <td>BridgeIndex</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 117: | Line 131: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 125: | Line 140: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 142: | Line 158: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 150: | Line 167: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td> |
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 158: | Line 176: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>KnotDet</td> |
<!-- KnotTheory = --> <td>KnotDet</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 166: | Line 185: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>KnotSignature</td> |
<!-- KnotTheory = --> <td>KnotSignature</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 174: | Line 194: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 182: | Line 203: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 190: | Line 212: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 198: | Line 221: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 206: | Line 230: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 214: | Line 239: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 222: | Line 248: | ||
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 230: | Line 257: | ||
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 238: | Line 266: | ||
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 246: | Line 275: | ||
<!-- KnotInfoTag = --> <td>volume</td> |
<!-- KnotInfoTag = --> <td>volume</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Hyperbolic Invariant</td> |
<!-- Type = --> <td>Hyperbolic Invariant</td> |
||
Line 254: | Line 284: | ||
<!-- KnotInfoTag = --> <td>conway_notation</td> |
<!-- KnotInfoTag = --> <td>conway_notation</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Knot Presentation</td> |
<!-- Type = --> <td>Knot Presentation</td> |
||
Line 262: | Line 293: | ||
<!-- KnotInfoTag = --> <td>concordance_order</td> |
<!-- KnotInfoTag = --> <td>concordance_order</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Concordance Invariant</td> |
<!-- Type = --> <td>Concordance Invariant</td> |
||
Line 270: | Line 302: | ||
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td> |
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Concordance Invariant</td> |
<!-- Type = --> <td>Concordance Invariant</td> |
||
Line 278: | Line 311: | ||
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td> |
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 286: | Line 320: | ||
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td> |
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 294: | Line 329: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td> |
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 302: | Line 338: | ||
<!-- KnotInfoTag = --> <td></td> |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td></td> |
<!-- Type = --> <td></td> |
Revision as of 09:28, 23 June 2006
Invariant name | KnotInfoTag | KnotTheory | KnotTheorySetter | ReadWiki | Type | WikiPage |
---|---|---|---|---|---|---|
Crossings | Crossings | Link Presentation | Crossings | |||
Knot Number | KnotNumber | Link Presentation | Number | |||
Knotilus URL | KnotilusURL | Navigation | KnotilusURL | |||
Next Knot | NextKnot | Knot | Navigation | Next_Knot | ||
Previous Knot | PreviousKnot | Knot | Navigation | Previous_Knot | ||
Gauss Code | GaussCode | GaussCode | Link Presentation | Gauss_Code | ||
Planar Diagram | PD | PD | Link Presentation | PD_Presentation | ||
Dowker-Thistlethwaite Code | DTCode | DTCode | Knot Presentation | DT_Code | ||
SymmetryType | SymmetryType | SymmetryType | 3D Invariant | Symmetry_Type | ||
UnknottingNumber | UnknottingNumber | 3D Invariant | Unknotting_Number | |||
ThreeGenus | ThreeGenus | 3D Invariant | 3-Genus | |||
ConcordanceGenus | ConcordanceGenus | 3D Invariant | ConcordanceGenus | |||
BridgeIndex | BridgeIndex | 3D Invariant | Bridge_Index | |||
SuperBridgeIndex | SuperBridgeIndex | 3D Invariant | Super_Bridge_Index | |||
NakanishiIndex | NakanishiIndex | 3D Invariant | Nakanishi_Index | |||
Jones | Jones[#1][q] & | Jones[#1] = Function[{q}, #2];& | Polynomial Invariant | Jones_Polynomial | ||
Alexander | Alexander[#1][t] & | Polynomial Invariant | Alexander_Polynomial | |||
Multivariable Alexander | MultivariableAlexander[#1][t] & | Polynomial Invariant | Multivariable_Alexander | |||
Determinant | KnotDet | Polynomial Invariant | Determinant | |||
Signature | KnotSignature | Polynomial Invariant | Signature | |||
Conway | Conway[#1][z] & | Polynomial Invariant | Conway_Polynomial | |||
HOMFLYPT | HOMFLYPT[#1][a, z] & | Polynomial Invariant | HOMFLYPT_Polynomial | |||
Kauffman | Kauffman[#1][a, z] & | Polynomial Invariant | Kauffman_Polynomial | |||
Khovanov-Rozansky Polynomial | Polynomial Invariant | Khovanov_Rozansky_Polynomial | ||||
Vassiliev2 | Vassiliev[2] | Vassiliev Invariant | V_2 | |||
Vassiliev3 | Vassiliev[3] | Vassiliev Invariant | V_3 | |||
Smooth 4-Genus | smooth_4_genus | 4D Invariant | Smooth4Genus | |||
Topological 4-Genus | topological_4_genus | 4D Invariant | Topological4Genus | |||
Thurston-Bennequin Number | thurston_bennequin_number | 3D Invariant | ThurstonBennequinNumber | |||
Hyperbolic Volume | volume | Hyperbolic Invariant | HyperbolicVolume | |||
Conway Notation | conway_notation | Knot Presentation | Conway Notation | |||
Concordance Order | concordance_order | Concordance Invariant | ConcordanceOrder | |||
Algebraic Concordance Order | concordance_order_algebraic | Concordance Invariant | AlgebraicConcordanceOrder | |||
Ozsvath-Szabo Tau Invariant | ozsvath_szabo_tau | 4D Invariant | TauInvariant | |||
Khovanov s-Invariant | khovanov_s_invariant | 4D Invariant | s-Invariant | |||
Rational Khovanov Polynomial | Kh[#1][q, t] & | Polynomial Invariant | Rational_Khovanov_Polynomial | |||
A-polynomial | A-polynomial |