8 18 Quick Notes: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
Tag: Manual revert
No edit summary
Tag: Manual revert
 
Line 1: Line 1:
According to ''Mathematical Models'' by H. Martyn Cundy and A.P. Rollett, second edition, 1961 (Oxford University Press), p. 57, a flat ribbon or strip can be tightly folded into a heptagonal 8_18 knot (just as it can be tightly folded into a [[:Image:Overhand-folded-ribbon-pentagram.png|pentagonal trefoil knot]]).
According to ''Mathematical Models'' by H. Martyn Cundy and A.P. Rollett, second edition, 1961 (Oxford University Press), p. 57, a flat ribbon or strip can be tightly folded into a heptagonal 8_18 knot (just as it can be tightly folded into a [[:Image:Overhand-folded-ribbon-pentagram.png|pentagonal trefoil knot]]).


This is the Carrick loop of practical knot tying. The Carrick bend of practical knot tying can be found at <math>8^2_{7}<>.
This is the Carrick loop of practical knot tying. The Carrick bend of practical knot tying can be found at <math>8^2_{7}</math>.

Latest revision as of 18:08, 15 November 2024

According to Mathematical Models by H. Martyn Cundy and A.P. Rollett, second edition, 1961 (Oxford University Press), p. 57, a flat ribbon or strip can be tightly folded into a heptagonal 8_18 knot (just as it can be tightly folded into a pentagonal trefoil knot).

This is the Carrick loop of practical knot tying. The Carrick bend of practical knot tying can be found at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{7}} .