L10a54: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was  | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!--  --> <!--  | 
  |||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
 -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.  | 
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 10 |  | 
  n = 10 |  | 
||
| Line 7: | Line 16: | ||
k = 54 |  | 
  k = 54 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-10:7,-1,2,-3,4,-5,8,-7,9,-8,6,-4,10,-9/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-10:7,-1,2,-3,4,-5,8,-7,9,-8,6,-4,10,-9/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
</table> |  | 
|||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 34: | Line 49: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of   | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 54]]</nowiki></pre></td></tr>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 54]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
||
| Line 50: | Line 65: | ||
  {7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9}]</nowiki></pre></td></tr>  | 
    {7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9}]</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, Alternating, 54]]</nowiki></pre></td></tr>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, Alternating, 54]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 3, -2, -1, -2, -2, -2, 3, -2, 3, -2}]</nowiki></pre></td></tr>  | 
||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 54]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L10a54_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
           <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 54]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L10a54_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, Alternating, 54]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 54]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(17/2)     3       6      10      12     13     12     10  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[10, Alternating, 54]], KnotSignature[Link[10, Alternating, 54]]}</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -3}</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 54]][q]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(17/2)     3       6      10      12     13     12     10  | 
  |||
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- +   | 
  q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- +   | 
||
            15/2    13/2    11/2    9/2    7/2    5/2    3/2  | 
              15/2    13/2    11/2    9/2    7/2    5/2    3/2  | 
||
| Line 69: | Line 78: | ||
  ------- - 4 Sqrt[q] + q  | 
    ------- - 4 Sqrt[q] + q  | 
||
  Sqrt[q]</nowiki></pre></td></tr>  | 
    Sqrt[q]</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, Alternating, 54]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -26    -22    -20    3     -16    -12    2    4     -6   3    2  | 
||
-q    + q    - q    + --- - q    + q    - --- + -- - q   + -- + -- +   | 
  -q    + q    - q    + --- - q    + q    - --- + -- - q   + -- + -- +   | 
||
                       18                  10    8          4    2  | 
                         18                  10    8          4    2  | 
||
| Line 77: | Line 86: | ||
     2    4  | 
       2    4  | 
||
  2 q  - q</nowiki></pre></td></tr>  | 
    2 q  - q</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, Alternating, 54]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>        3  | 
||
  a    a             3        5        7          3      3  3  | 
    a    a             3        5        7          3      3  3  | 
||
-(-) + -- - a z - 2 a  z + 4 a  z - 2 a  z + 2 a z  - 5 a  z  +   | 
  -(-) + -- - a z - 2 a  z + 4 a  z - 2 a  z + 2 a z  - 5 a  z  +   | 
||
| Line 85: | Line 94: | ||
     5  3    7  3      5      3  5      5  5    3  7  | 
       5  3    7  3      5      3  5      5  5    3  7  | 
||
  6 a  z  - a  z  + a z  - 4 a  z  + 2 a  z  - a  z</nowiki></pre></td></tr>  | 
    6 a  z  - a  z  + a z  - 4 a  z  + 2 a  z  - a  z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, Alternating, 54]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>           3  | 
||
  2   a   a             3        5      7      9        2  2  | 
    2   a   a             3        5      7      9        2  2  | 
||
-a  + - + -- - a z + 2 a  z + 5 a  z + a  z - a  z + 3 a  z  +   | 
  -a  + - + -- - a z + 2 a  z + 5 a  z + a  z - a  z + 3 a  z  +   | 
||
| Line 105: | Line 114: | ||
     2  8       4  8      6  8      3  9      5  9  | 
       2  8       4  8      6  8      3  9      5  9  | 
||
  5 a  z  - 10 a  z  - 5 a  z  - 2 a  z  - 2 a  z</nowiki></pre></td></tr>  | 
    5 a  z  - 10 a  z  - 5 a  z  - 2 a  z  - 2 a  z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 54]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4    7      1        2        1        4        2        6  | 
||
{0, --}  | 
  |||
    48</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 54]][q, t]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4    7      1        2        1        4        2        6  | 
  |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +   | 
  -- + -- + ------ + ------ + ------ + ------ + ------ + ------ +   | 
||
 4    2    18  7    16  6    14  6    14  5    12  5    12  4  | 
   4    2    18  7    16  6    14  6    14  5    12  5    12  4  | 
||
Latest revision as of 02:46, 3 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a54's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X18,11,19,12 X12,6,13,5 X4,18,5,17 X14,7,15,8 X16,14,17,13 X20,15,7,16 X6,19,1,20 | 
| Gauss code | {1, -2, 3, -6, 5, -10}, {7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9} | 
| A Braid Representative | |||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



