L11n375: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 16: | Line 16: | ||
k = 375 | |
k = 375 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,11,-5,-3:-8,7,-9,6:-4,-1,2,5,-10,4,-7,8,-11,-2,3,10,-6,9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,11,-5,-3:-8,7,-9,6:-4,-1,2,5,-10,4,-7,8,-11,-2,3,10,-6,9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
Line 42: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 375]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 375]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Line 59: | Line 67: | ||
{-4, -1, 2, 5, -10, 4, -7, 8, -11, -2, 3, 10, -6, 9}]</nowiki></pre></td></tr> |
{-4, -1, 2, 5, -10, 4, -7, 8, -11, -2, 3, 10, -6, 9}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 375]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, 3, -4, 5, -4, -3, -2, -1, -4, -3, -4, -3, 2, -4, 3, -4, |
|||
⚫ | |||
-5, -4, -3, -2, -4, -3}]</nowiki></pre></td></tr> |
|||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 375]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n375_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 375]]</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 3 5 5 6 3 4 2 -3 |
|||
-q + --- - --- + -- - -- + -- - -- + -- - -- + q |
-q + --- - --- + -- - -- + -- - -- + -- - -- + q |
||
11 10 9 8 7 6 5 4 |
11 10 9 8 7 6 5 4 |
||
q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 375]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -42 2 -38 2 2 4 6 4 6 3 3 |
||
-q - --- - q - --- + --- + --- + --- + --- + --- + --- + --- + |
-q - --- - q - --- + --- + --- + --- + --- + --- + --- + --- + |
||
40 36 32 30 28 26 24 22 20 |
40 36 32 30 28 26 24 22 20 |
||
Line 77: | Line 89: | ||
18 |
18 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 375]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 12 14 |
||
6 8 10 12 2 a 5 a 4 a a 6 2 |
6 8 10 12 2 a 5 a 4 a a 6 2 |
||
a + 8 a - 15 a + 6 a + ---- - ----- + ----- - --- + 3 a z + |
a + 8 a - 15 a + 6 a + ---- - ----- + ----- - --- + 3 a z + |
||
Line 89: | Line 101: | ||
6 6 8 6 |
6 6 8 6 |
||
a z + 2 a z</nowiki></pre></td></tr> |
a z + 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 375]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 12 14 |
||
6 8 10 12 14 2 a 5 a 4 a a |
6 8 10 12 14 2 a 5 a 4 a a |
||
-a + 9 a + 21 a + 14 a + 2 a - ---- - ----- - ----- - --- + |
-a + 9 a + 21 a + 14 a + 2 a - ---- - ----- - ----- - --- + |
||
Line 118: | Line 130: | ||
11 9 |
11 9 |
||
a z</nowiki></pre></td></tr> |
a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 375]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 2 1 3 1 |
||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
||
25 9 23 8 21 8 19 8 21 7 19 7 |
25 9 23 8 21 8 19 8 21 7 19 7 |
Latest revision as of 02:29, 3 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n375's Link Presentations]
Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X17,22,18,19 X11,20,12,21 X19,12,20,13 X21,18,22,5 X9,16,10,17 X13,2,14,3 |
Gauss code | {1, 11, -5, -3}, {-8, 7, -9, 6}, {-4, -1, 2, 5, -10, 4, -7, 8, -11, -2, 3, 10, -6, 9} |
A Braid Representative | |||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(3)-1) \left(t(1) t(3)^4-t(1) t(3)^3+2 t(1) t(2) t(3)^3-t(2) t(3)+2 t(3)+t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}}} (db) |
Jones polynomial | (db) |
Signature | -6 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{14} z^{-2} +a^{12} z^2+4 a^{12} z^{-2} +6 a^{12}-3 a^{10} z^4-14 a^{10} z^2-5 a^{10} z^{-2} -15 a^{10}+2 a^8 z^6+10 a^8 z^4+14 a^8 z^2+2 a^8 z^{-2} +8 a^8+a^6 z^6+4 a^6 z^4+3 a^6 z^2+a^6} (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{15}-2 z a^{15}+a^{15} z^{-1} +2 z^4 a^{14}-4 z^2 a^{14}-a^{14} z^{-2} +2 a^{14}+z^7 a^{13}-5 z^5 a^{13}+14 z^3 a^{13}-15 z a^{13}+5 a^{13} z^{-1} +2 z^8 a^{12}-11 z^6 a^{12}+25 z^4 a^{12}-25 z^2 a^{12}-4 a^{12} z^{-2} +14 a^{12}+z^9 a^{11}-z^7 a^{11}-14 z^5 a^{11}+40 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +5 z^8 a^{10}-26 z^6 a^{10}+47 z^4 a^{10}-40 z^2 a^{10}-5 a^{10} z^{-2} +21 a^{10}+z^9 a^9-16 z^5 a^9+30 z^3 a^9-20 z a^9+5 a^9 z^{-1} +3 z^8 a^8-14 z^6 a^8+20 z^4 a^8-16 z^2 a^8-2 a^8 z^{-2} +9 a^8+2 z^7 a^7-7 z^5 a^7+3 z^3 a^7+z^6 a^6-4 z^4 a^6+3 z^2 a^6-a^6} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|