L11n306: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 16: | Line 16: | ||
k = 306 | |
k = 306 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:10,-1,-7,6,-8,9:-11,2,-4,5,-3,7,-6,8,-9,4,-5,3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:10,-1,-7,6,-8,9:-11,2,-4,5,-3,7,-6,8,-9,4,-5,3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 42: | Line 48: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 306]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 306]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 59: | Line 65: | ||
{-11, 2, -4, 5, -3, 7, -6, 8, -9, 4, -5, 3}]</nowiki></pre></td></tr> |
{-11, 2, -4, 5, -3, 7, -6, 8, -9, 4, -5, 3}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 306]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, -3, 2, -1, -1, -1, 2, 3, -2, -1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 306]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n306_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 306]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-6</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 306]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 3 4 4 5 3 4 -2 1 |
|||
-q + -- - -- + -- - -- + -- - -- + -- - q + - |
-q + -- - -- + -- - -- + -- - -- + -- - q + - |
||
9 8 7 6 5 4 3 q |
9 8 7 6 5 4 3 q |
||
q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 306]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 2 -28 -26 2 -20 5 4 6 5 4 |
||
-q - --- - q - q + --- + q + --- + --- + --- + --- + --- + |
-q - --- - q - q + --- + q + --- + --- + --- + --- + --- + |
||
30 22 18 16 14 12 10 |
30 22 18 16 14 12 10 |
||
| Line 77: | Line 85: | ||
8 |
8 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 306]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 |
||
4 6 8 10 2 a 5 a 4 a a 4 2 |
4 6 8 10 2 a 5 a 4 a a 4 2 |
||
9 a - 18 a + 11 a - 2 a + ---- - ---- + ---- - --- + 12 a z - |
9 a - 18 a + 11 a - 2 a + ---- - ---- + ---- - --- + 12 a z - |
||
| Line 89: | Line 97: | ||
6 6 8 6 6 8 |
6 6 8 6 6 8 |
||
7 a z + a z - a z</nowiki></pre></td></tr> |
7 a z + a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 306]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 5 7 |
||
4 6 8 12 2 a 5 a 4 a a 5 a 9 a |
4 6 8 12 2 a 5 a 4 a a 5 a 9 a |
||
11 a + 22 a + 13 a - a - ---- - ---- - ---- - --- + ---- + ---- + |
11 a + 22 a + 13 a - a - ---- - ---- - ---- - --- + ---- + ---- + |
||
| Line 115: | Line 123: | ||
6 8 8 8 5 9 7 9 |
6 8 8 8 5 9 7 9 |
||
5 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
5 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 306]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 4 1 1 2 1 3 2 |
||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
7 5 21 7 19 6 17 6 15 6 17 5 15 5 |
7 5 21 7 19 6 17 6 15 6 17 5 15 5 |
||
Latest revision as of 02:11, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n306's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X15,22,16,11 X13,20,14,21 X21,14,22,15 X17,8,18,9 X7,16,8,17 X9,18,10,19 X19,10,20,5 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -7, 6, -8, 9}, {-11, 2, -4, 5, -3, 7, -6, 8, -9, 4, -5, 3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w^4-u v^2 w^3+u v^2 w^2-u v^2 w+u v w-u v+u-v^2 w^4+v w^4-v w^3+w^3-w^2+w-1}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-10} +2 q^{-9} -3 q^{-8} +4 q^{-7} -4 q^{-6} +5 q^{-5} -3 q^{-4} +4 q^{-3} - q^{-2} + q^{-1} }[/math] (db) |
| Signature | -6 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{10} \left(-z^2\right)-a^{10} z^{-2} -2 a^{10}+a^8 z^6+6 a^8 z^4+12 a^8 z^2+4 a^8 z^{-2} +11 a^8-a^6 z^8-7 a^6 z^6-18 a^6 z^4-24 a^6 z^2-5 a^6 z^{-2} -18 a^6+a^4 z^6+6 a^4 z^4+12 a^4 z^2+2 a^4 z^{-2} +9 a^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z a^{13}+2 z^2 a^{12}-a^{12}+z^5 a^{11}-z^3 a^{11}-2 z a^{11}+a^{11} z^{-1} +3 z^6 a^{10}-10 z^4 a^{10}+6 z^2 a^{10}-a^{10} z^{-2} +5 z^7 a^9-23 z^5 a^9+31 z^3 a^9-19 z a^9+5 a^9 z^{-1} +4 z^8 a^8-19 z^6 a^8+27 z^4 a^8-21 z^2 a^8-4 a^8 z^{-2} +13 a^8+z^9 a^7+z^7 a^7-25 z^5 a^7+50 z^3 a^7-35 z a^7+9 a^7 z^{-1} +5 z^8 a^6-29 z^6 a^6+55 z^4 a^6-46 z^2 a^6-5 a^6 z^{-2} +22 a^6+z^9 a^5-4 z^7 a^5-z^5 a^5+18 z^3 a^5-19 z a^5+5 a^5 z^{-1} +z^8 a^4-7 z^6 a^4+18 z^4 a^4-21 z^2 a^4-2 a^4 z^{-2} +11 a^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



