L10a87: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = |
t = a | |
||
k = 87 | |
k = 87 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,5,-9,6,-3:3,-1,2,-10,4,-5,7,-8,9,-6,8,-7,10,-2/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,5,-9,6,-3:3,-1,2,-10,4,-5,7,-8,9,-6,8,-7,10,-2/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 43: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, Alternating, 87]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[20, 9, 7, 10], X[6, 7, 1, 8], X[2, 11, 3, 12], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 87]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[20, 9, 7, 10], X[6, 7, 1, 8], X[2, 11, 3, 12], |
|||
X[12, 3, 13, 4], X[16, 5, 17, 6], X[18, 13, 19, 14], |
X[12, 3, 13, 4], X[16, 5, 17, 6], X[18, 13, 19, 14], |
||
X[14, 17, 15, 18], X[4, 15, 5, 16], X[10, 19, 11, 20]]</nowiki></ |
X[14, 17, 15, 18], X[4, 15, 5, 16], X[10, 19, 11, 20]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[10, Alternating, 87]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -4, 5, -9, 6, -3}, |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
{3, -1, 2, -10, 4, -5, 7, -8, 9, -6, 8, -7, 10, -2}]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, -3, -3, -4, 5, -4, -3, -2, -1, -3, 4, -3, -2, -3, -5, 4, |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -4, 5, -9, 6, -3}, |
|||
-3, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 87]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a87_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-5</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 87]][q]</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L10a87_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ----- - ----- + ----- - ----- + ----- - ----- + ----- - |
-q + ----- - ----- + ----- - ----- + ----- - ----- + ----- - |
||
23/2 21/2 19/2 17/2 15/2 13/2 11/2 |
23/2 21/2 19/2 17/2 15/2 13/2 11/2 |
||
| Line 106: | Line 82: | ||
---- + ---- - q |
---- + ---- - q |
||
9/2 7/2 |
9/2 7/2 |
||
q q</nowiki></ |
q q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
q - q + --- - --- + q - q - q + --- - q + --- + |
q - q + --- - --- + q - q - q + --- - q + --- + |
||
32 30 22 18 |
32 30 22 18 |
||
| Line 121: | Line 92: | ||
q + q + --- - q + q |
q + q + --- - q + q |
||
12 |
12 |
||
q</nowiki></ |
q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 |
|||
a a 5 7 9 11 5 3 7 3 |
a a 5 7 9 11 5 3 7 3 |
||
-(--) + -- - 3 a z - 2 a z + a z + a z - 3 a z - 5 a z - |
-(--) + -- - 3 a z - 2 a z + a z + a z - 3 a z - 5 a z - |
||
| Line 134: | Line 100: | ||
9 3 11 3 5 5 7 5 9 5 |
9 3 11 3 5 5 7 5 9 5 |
||
a z + a z - a z - 2 a z - a z</nowiki></ |
a z + a z - a z - 2 a z - a z</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 |
|||
6 a a 5 7 9 11 13 15 |
6 a a 5 7 9 11 13 15 |
||
-a + -- + -- - 3 a z - a z - a z - 3 a z - a z - a z - |
-a + -- + -- - 3 a z - a z - a z - 3 a z - a z - a z - |
||
| Line 162: | Line 123: | ||
10 8 12 8 9 9 11 9 |
10 8 12 8 9 9 11 9 |
||
5 a z - 3 a z - a z - a z</nowiki></ |
5 a z - 3 a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 87]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
||
26 10 24 9 22 9 22 8 20 8 20 7 |
26 10 24 9 22 9 22 8 20 8 20 7 |
||
| Line 182: | Line 138: | ||
------ + ------ + ------ + ----- + ---- |
------ + ------ + ------ + ----- + ---- |
||
12 3 10 3 10 2 8 2 6 |
12 3 10 3 10 2 8 2 6 |
||
q t q t q t q t q t</nowiki></ |
q t q t q t q t q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Latest revision as of 02:17, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a87's Link Presentations]
| Planar diagram presentation | X8192 X20,9,7,10 X6718 X2,11,3,12 X12,3,13,4 X16,5,17,6 X18,13,19,14 X14,17,15,18 X4,15,5,16 X10,19,11,20 |
| Gauss code | {1, -4, 5, -9, 6, -3}, {3, -1, 2, -10, 4, -5, 7, -8, 9, -6, 8, -7, 10, -2} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{4 u^2 v^2-4 u^2 v+u^2-4 u v^2+9 u v-4 u+v^2-4 v+4}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{6}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{9}{q^{19/2}}-\frac{11}{q^{17/2}}+\frac{12}{q^{15/2}}-\frac{11}{q^{13/2}}+\frac{8}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{11}+z a^{11}-z^5 a^9-z^3 a^9+z a^9-2 z^5 a^7-5 z^3 a^7-2 z a^7+a^7 z^{-1} -z^5 a^5-3 z^3 a^5-3 z a^5-a^5 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{15}+2 z^3 a^{15}-z a^{15}-3 z^6 a^{14}+6 z^4 a^{14}-3 z^2 a^{14}-4 z^7 a^{13}+6 z^5 a^{13}-z^3 a^{13}-z a^{13}-3 z^8 a^{12}+z^6 a^{12}+3 z^4 a^{12}-z^9 a^{11}-5 z^7 a^{11}+6 z^5 a^{11}+3 z^3 a^{11}-3 z a^{11}-5 z^8 a^{10}+3 z^6 a^{10}+4 z^4 a^{10}-3 z^2 a^{10}-z^9 a^9-4 z^7 a^9+4 z^5 a^9+2 z^3 a^9-z a^9-2 z^8 a^8-3 z^6 a^8+10 z^4 a^8-6 z^2 a^8-3 z^7 a^7+4 z^5 a^7-z^3 a^7-z a^7+a^7 z^{-1} -2 z^6 a^6+3 z^4 a^6-a^6-z^5 a^5+3 z^3 a^5-3 z a^5+a^5 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|





