L11a511: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 511 | |
k = 511 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-11:9,-1,4,-7,3,-6:10,-2,5,-8,11,-4,6,-3,7,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-11:9,-1,4,-7,3,-6:10,-2,5,-8,11,-4,6,-3,7,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
Line 44: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 511]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[14, 3, 15, 4], X[20, 12, 21, 11], X[18, 10, 19, 9], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 511]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[14, 3, 15, 4], X[20, 12, 21, 11], X[18, 10, 19, 9], |
|||
X[22, 16, 13, 15], X[12, 20, 7, 19], X[10, 22, 11, 21], |
X[22, 16, 13, 15], X[12, 20, 7, 19], X[10, 22, 11, 21], |
||
X[16, 6, 17, 5], X[2, 7, 3, 8], X[4, 13, 5, 14], X[6, 18, 1, 17]]</nowiki></ |
X[16, 6, 17, 5], X[2, 7, 3, 8], X[4, 13, 5, 14], X[6, 18, 1, 17]]</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
{10, -2, 5, -8, 11, -4, 6, -3, 7, -5}]</nowiki></pre></td></tr> |
|||
⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, 3, 2, -1, 4, -3, 5, -4, -3, 2, -3, 2, 2, 4, -3, 2, -5, -4, |
||
⚫ | |||
-3, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 511]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a511_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 511]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 511]][q]</nowiki></pre></td></tr> |
||
⚫ | |||
<tr align=left><td></td><td>[[Image:L11a511_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-10 + q - -- + - + 15 q - 16 q + 17 q - 14 q + 11 q - 6 q + |
-10 + q - -- + - + 15 q - 16 q + 17 q - 14 q + 11 q - 6 q + |
||
2 q |
2 q |
||
Line 105: | Line 81: | ||
7 8 |
7 8 |
||
3 q - q</nowiki></ |
3 q - q</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
2 + q - q + -- + 5 q + 6 q + 2 q + 4 q + 4 q - q + |
2 + q - q + -- + 5 q + 6 q + 2 q + 4 q + 4 q - q + |
||
4 |
4 |
||
Line 118: | Line 89: | ||
16 18 20 22 24 |
16 18 20 22 24 |
||
4 q - q - q + q - q</nowiki></ |
4 q - q - q + q - q</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
-6 4 5 2 -2 1 2 2 2 z 5 z |
-6 4 5 2 -2 1 2 2 2 z 5 z |
||
1 - a + -- - -- + a + z + ----- - ----- - 3 z - ---- + ---- - |
1 - a + -- - -- + a + z + ----- - ----- - 3 z - ---- + ---- - |
||
Line 135: | Line 101: | ||
---- + a z - 2 z - -- + ---- + -- + -- + -- |
---- + a z - 2 z - -- + ---- + -- + -- + -- |
||
2 6 4 2 4 2 |
2 6 4 2 4 2 |
||
a a a a a a</nowiki></ |
a a a a a a</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
4 + -- + -- + -- - a - z - ----- - ----- + ---- + --- - -- - --- - |
4 + -- + -- + -- - a - z - ----- - ----- + ---- + --- - -- - --- - |
||
6 4 2 4 2 2 2 3 a z 7 5 |
6 4 2 4 2 2 2 3 a z 7 5 |
||
Line 175: | Line 136: | ||
3 a z + 4 z + ---- + ----- + ---- + ---- + ---- + ---- + --- + --- |
3 a z + 4 z + ---- + ----- + ---- + ---- + ---- + ---- + --- + --- |
||
6 4 2 5 3 a 4 2 |
6 4 2 5 3 a 4 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 511]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
9 q + 7 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
9 q + 7 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 3 3 3 3 2 2 q t t |
7 4 5 3 3 3 3 2 2 q t t |
||
Line 191: | Line 147: | ||
11 4 11 5 13 5 13 6 15 6 17 7 |
11 4 11 5 13 5 13 6 15 6 17 7 |
||
7 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
7 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
Latest revision as of 02:27, 3 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a511's Link Presentations]
Planar diagram presentation | X8192 X14,3,15,4 X20,12,21,11 X18,10,19,9 X22,16,13,15 X12,20,7,19 X10,22,11,21 X16,6,17,5 X2738 X4,13,5,14 X6,18,1,17 |
Gauss code | {1, -9, 2, -10, 8, -11}, {9, -1, 4, -7, 3, -6}, {10, -2, 5, -8, 11, -4, 6, -3, 7, -5} |
A Braid Representative | |||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|