L11a541: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
k = 541 | |
k = 541 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,8,-7:9,-3,5,-4:11,-2,3,-6,4,-8,7,-9,6,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,8,-7:9,-3,5,-4:11,-2,3,-6,4,-8,7,-9,6,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 541]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 541]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
Latest revision as of 03:39, 3 September 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a541's Link Presentations]
Planar diagram presentation | X6172 X10,3,11,4 X20,12,21,11 X22,13,19,14 X18,22,9,21 X12,17,13,18 X8,16,5,15 X14,8,15,7 X16,19,17,20 X2536 X4,9,1,10 |
Gauss code | {1, -10, 2, -11}, {10, -1, 8, -7}, {9, -3, 5, -4}, {11, -2, 3, -6, 4, -8, 7, -9, 6, -5} |
A Braid Representative |
| |||||
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(3)-1) (t(4)-1)^2 (-t(2) t(1)+t(2) t(4) t(1)-t(4) t(1)+2 t(1)+t(2)-2 t(2) t(4)+t(4)-1)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{7/2}+5 q^{5/2}-13 q^{3/2}+18 \sqrt{q}-\frac{25}{\sqrt{q}}+\frac{25}{q^{3/2}}-\frac{27}{q^{5/2}}+\frac{20}{q^{7/2}}-\frac{15}{q^{9/2}}+\frac{7}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}}} (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^7-a^7 z^{-1} +3 z^3 a^5+6 z a^5+5 a^5 z^{-1} +a^5 z^{-3} -3 z^5 a^3-8 z^3 a^3-12 z a^3-10 a^3 z^{-1} -3 a^3 z^{-3} +z^7 a+3 z^5 a+6 z^3 a+9 z a+9 a z^{-1} +3 a z^{-3} -z^5 a^{-1} -z^3 a^{-1} -2 z a^{-1} -3 a^{-1} z^{-1} - a^{-1} z^{-3} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 a^4 z^{10}-2 a^2 z^{10}-4 a^5 z^9-13 a^3 z^9-9 a z^9-4 a^6 z^8-12 a^4 z^8-24 a^2 z^8-16 z^8-3 a^7 z^7-4 a^5 z^7+5 a^3 z^7-7 a z^7-13 z^7 a^{-1} -a^8 z^6+3 a^6 z^6+24 a^4 z^6+48 a^2 z^6-5 z^6 a^{-2} +23 z^6+8 a^7 z^5+28 a^5 z^5+44 a^3 z^5+43 a z^5+18 z^5 a^{-1} -z^5 a^{-3} +3 a^8 z^4+9 a^6 z^4+2 a^4 z^4-11 a^2 z^4+2 z^4 a^{-2} -5 z^4-9 a^7 z^3-43 a^5 z^3-68 a^3 z^3-43 a z^3-9 z^3 a^{-1} -3 a^8 z^2-14 a^6 z^2-30 a^4 z^2-24 a^2 z^2-5 z^2+6 a^7 z+31 a^5 z+48 a^3 z+30 a z+7 z a^{-1} +a^8+6 a^6+18 a^4+21 a^2+9-2 a^7 z^{-1} -11 a^5 z^{-1} -18 a^3 z^{-1} -14 a z^{-1} -5 a^{-1} z^{-1} -3 a^4 z^{-2} -6 a^2 z^{-2} -3 z^{-2} +a^5 z^{-3} +3 a^3 z^{-3} +3 a z^{-3} + a^{-1} z^{-3} } (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|