L11a532: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
k = 532 | |
k = 532 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,8,-10,9,-3,11,-8,10,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,8,-10,9,-3,11,-8,10,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 532]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 532]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
Latest revision as of 02:53, 3 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a532's Link Presentations]
Planar diagram presentation | X6172 X2536 X18,12,19,11 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X20,16,21,15 X22,18,13,17 X16,22,17,21 X12,20,9,19 |
Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11}, {7, -6, 8, -10, 9, -3, 11, -8, 10, -9} |
A Braid Representative | ||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u v w x^3-u v w x^2+u v w x-u v w-u v x^3+2 u v x^2-2 u v x+2 u v-2 u w x^3+2 u w x^2-2 u w x+u w+2 u x^3-3 u x^2+3 u x-2 u-2 v w x^3+3 v w x^2-3 v w x+2 v w+v x^3-2 v x^2+2 v x-2 v+2 w x^3-2 w x^2+2 w x-w-x^3+x^2-x+1}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}}} (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^{10}-z^{10}-a^3 z^9-6 a z^9-5 z^9 a^{-1} -a^4 z^8-a^2 z^8-11 z^8 a^{-2} -11 z^8-a^5 z^7-3 a^3 z^7+6 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +a^4 z^6-2 a^2 z^6+9 z^6 a^{-2} -10 z^6 a^{-4} +16 z^6+6 a^5 z^5+23 a^3 z^5+21 a z^5+28 z^5 a^{-1} +20 z^5 a^{-3} -4 z^5 a^{-5} +10 a^4 z^4+36 a^2 z^4+19 z^4 a^{-2} +10 z^4 a^{-4} -z^4 a^{-6} +34 z^4-14 a^5 z^3-42 a^3 z^3-42 a z^3-22 z^3 a^{-1} -8 z^3 a^{-3} -26 a^4 z^2-73 a^2 z^2-34 z^2 a^{-2} -6 z^2 a^{-4} -75 z^2+16 a^5 z+39 a^3 z+37 a z+16 z a^{-1} +2 z a^{-3} +23 a^4+60 a^2+24 a^{-2} +4 a^{-4} +58-9 a^5 z^{-1} -23 a^3 z^{-1} -24 a z^{-1} -12 a^{-1} z^{-1} -2 a^{-3} z^{-1} -7 a^4 z^{-2} -19 a^2 z^{-2} -7 a^{-2} z^{-2} - a^{-4} z^{-2} -18 z^{-2} +2 a^5 z^{-3} +7 a^3 z^{-3} +9 a z^{-3} +5 a^{-1} z^{-3} + a^{-3} z^{-3} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|