3 1 Quantum Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Quantum invariant page header|knot=3_1}}
The braid index of [[3_1]] is only 2, so it's easy to calculate lots of quantum invariants.
<!-- automatically generated by QuantumInvariantPageRobot.nb, do not edit until after END comment -->
<!-- automatically generated by QuantumInvariantPageRobot.nb, do not edit until after END comment -->
{{Quantum invariant table start|algebra=A1}}
{{Quantum invariant table start|knot=3_1|algebra=A1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=2}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=2}}
Line 6: Line 8:
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=4}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=4}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=5}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=5}}
{{Quantum invariant table end}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=6}}
{{Quantum invariant table start|algebra=A2}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=8}}
{{Quantum invariant table end|knot=3_1|algebra=A1}}
{{Quantum invariant table start|knot=3_1|algebra=A2}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=0,2}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=2,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=2,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=3,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=3,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A2}}
{{Quantum invariant table start|algebra=A3}}
{{Quantum invariant table start|knot=3_1|algebra=A3}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=0,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=0,1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=0,1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,1}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A3}}
{{Quantum invariant table start|algebra=A4}}
{{Quantum invariant table start|knot=3_1|algebra=A4}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=0,0,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=1,0,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=1,0,0,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A4}}
{{Quantum invariant table start|algebra=B2}}
{{Quantum invariant table start|knot=3_1|algebra=A5}}
{{Quantum invariant table entry|knot=3_1|algebra=A5|weight=0,0,0,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A5|weight=1,0,0,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=A5}}
{{Quantum invariant table start|knot=3_1|algebra=A6}}
{{Quantum invariant table entry|knot=3_1|algebra=A6|weight=0,0,0,0,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A6|weight=1,0,0,0,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=A6}}
{{Quantum invariant table start|knot=3_1|algebra=B2}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=1,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=B2}}
{{Quantum invariant table start|algebra=D4}}
{{Quantum invariant table start|knot=3_1|algebra=B3}}
{{Quantum invariant table entry|knot=3_1|algebra=B3|weight=1,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=B3}}
{{Quantum invariant table start|knot=3_1|algebra=B4}}
{{Quantum invariant table entry|knot=3_1|algebra=B4|weight=1,0,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=B4}}
{{Quantum invariant table start|knot=3_1|algebra=B5}}
{{Quantum invariant table entry|knot=3_1|algebra=B5|weight=1,0,0,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=B5}}
{{Quantum invariant table start|knot=3_1|algebra=C3}}
{{Quantum invariant table entry|knot=3_1|algebra=C3|weight=1,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=C3}}
{{Quantum invariant table start|knot=3_1|algebra=C4}}
{{Quantum invariant table entry|knot=3_1|algebra=C4|weight=1,0,0,0}}
{{Quantum invariant table end|knot=3_1|algebra=C4}}
{{Quantum invariant table start|knot=3_1|algebra=D4}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=1,0,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=1,0,0,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=D4}}
{{Quantum invariant table start|algebra=G2}}
{{Quantum invariant table start|knot=3_1|algebra=G2}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=1,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=G2}}
<!-- END of automatically generated section, feel free to edit below... -->
<!-- END of automatically generated section, feel free to edit below... -->

Latest revision as of 11:41, 28 June 2006

Further quantum knot invariants for 3_1.

The braid index of 3_1 is only 2, so it's easy to calculate lots of quantum invariants. A1 Invariants.

Weight Invariant
1
2
3
4
5
6
8

A2 Invariants.

Weight Invariant
0,1
0,2
1,0
1,1
2,0
3,0

A3 Invariants.

Weight Invariant
0,0,1
0,1,0
1,0,0
1,0,1

A4 Invariants.

Weight Invariant
0,0,0,1
0,1,0,0
1,0,0,0

A5 Invariants.

Weight Invariant
0,0,0,0,1
1,0,0,0,0

A6 Invariants.

Weight Invariant
0,0,0,0,0,1
1,0,0,0,0,0

B2 Invariants.

Weight Invariant
0,1
1,0

B3 Invariants.

Weight Invariant
1,0,0

B4 Invariants.

Weight Invariant
1,0,0,0

B5 Invariants.

Weight Invariant
1,0,0,0,0

C3 Invariants.

Weight Invariant
1,0,0

C4 Invariants.

Weight Invariant
1,0,0,0

D4 Invariants.

Weight Invariant
0,1,0,0
1,0,0,0

G2 Invariants.

Weight Invariant
0,1
1,0