A ropelength bibliography: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
(Replacing page with '*{{bibitem|author=|title=Quadrisecants Give New Lower Bounds for the Ropelength of a Knot|arXiv=math.GT/0408026}} *{{arXiv|math.GT/0203205}} *{{arXiv|math.GT/0508293}} *Piotr P...') |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
*{{bibitem|author=|title=Quadrisecants Give New Lower Bounds for the Ropelength of a Knot|arXiv=math.GT/0408026}} |
*{{bibitem|author=|title=Quadrisecants Give New Lower Bounds for the Ropelength of a Knot|arXiv=math.GT/0408026}} |
||
*{{arXiv|math.GT/0203205}} |
|||
*{{arXiv|math.GT/0508293}} |
|||
*Piotr Pieranski, {{Article Link|In search of ideal knots}}. In A. Stasiak, V. Katritch and L. Kauffman, editors, Ideal Knots, 20–41. World Scientific, 1998. |
|||
*Eric Rawdon, {{Article Link|Can computers discover ideal knots?}} Experiment. Math. 12:3, 287–302. |
Latest revision as of 16:21, 27 May 2009
- Quadrisecants Give New Lower Bounds for the Ropelength of a Knot, arXiv:math.GT/0408026
- arXiv:math.GT/0203205
- arXiv:math.GT/0508293
- Piotr Pieranski, In search of ideal knots,. In A. Stasiak, V. Katritch and L. Kauffman, editors, Ideal Knots, 20–41. World Scientific, 1998.
- Eric Rawdon, Can computers discover ideal knots?, Experiment. Math. 12:3, 287–302.