Data:T(11,4)/Integral Khovanov Homology: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{| border=1 cellspacing=0 cellpadding=1 |
|||
<math>t^{22} \textrm{ZMod}(2) q^{65}+t^{21} \textrm{ZMod}(0) q^{63}+t^{20} \textrm{ZMod}(0) q^{63}+t^{22} \textrm{ZMod}(2) q^{63}+t^{21} \textrm{ZMod}(4) q^{61}+t^{20} \textrm{ZMod}(2,4) q^{61}+t^{20} \textrm{ZMod}(0,2) q^{59}+t^{18} \textrm{ZMod}(0,2) q^{59}+t^{19} \textrm{ZMod}(0,0,2) q^{59}+t^{16} \textrm{ZMod}(0) q^{57}+t^{17} \textrm{ZMod}(0,0) q^{57}+t^{18} \textrm{ZMod}(2,2) q^{57}+t^{19} \textrm{ZMod}(2,4) q^{57}+t^{18} \textrm{ZMod}(0) q^{55}+t^{16} \textrm{ZMod}(2,4) q^{55}+t^{17} \textrm{ZMod}(0,0,2,4) q^{55}+t^{17} \textrm{ZMod}(2) q^{53}+t^{14} \textrm{ZMod}(2) q^{53}+t^{16} \textrm{ZMod}(0,0,2) q^{53}+t^{15} \textrm{ZMod}(0,0,0,2) q^{53}+t^{16} \textrm{ZMod}(0) q^{51}+t^{12} \textrm{ZMod}(0) q^{51}+t^{14} \textrm{ZMod}(2) q^{51}+t^{13} \textrm{ZMod}(0,0) q^{51}+t^{15} \textrm{ZMod}(2,2,4) q^{51}+t^{11} \textrm{ZMod}(0) q^{49}+t^{12} \textrm{ZMod}(2) q^{49}+t^{14} \textrm{ZMod}(0,0) q^{49}+t^{13} \textrm{ZMod}(0,2,4) q^{49}+t^{13} \textrm{ZMod}(2) q^{47}+t^{10} \textrm{ZMod}(2) q^{47}+t^{12} \textrm{ZMod}(0,0) q^{47}+t^{11} \textrm{ZMod}(0,0,2) q^{47}+t^{12} \textrm{ZMod}(0) q^{45}+t^{11} \textrm{ZMod}(2) q^{45}+t^9 \textrm{ZMod}(0,0) q^{45}+t^{10} \textrm{ZMod}(0,2) q^{45}+t^{10} \textrm{ZMod}(0) q^{43}+t^7 \textrm{ZMod}(0) q^{43}+t^9 \textrm{ZMod}(2,4) q^{43}+t^5 \textrm{ZMod}(0) q^{41}+t^8 \textrm{ZMod}(0,0) q^{41}+t^7 \textrm{ZMod}(0,2) q^{41}+t^6 \textrm{ZMod}(0) q^{39}+t^5 \textrm{ZMod}(0) q^{39}+t^7 \textrm{ZMod}(2) q^{39}+t^6 \textrm{ZMod}(0) q^{37}+t^4 \textrm{ZMod}(0) q^{37}+t^3 \textrm{ZMod}(0) q^{37}+t^4 \textrm{ZMod}(0) q^{35}+t^3 \textrm{ZMod}(2) q^{35}+t^2 \textrm{ZMod}(0) q^{33}+\textrm{ZMod}(0) q^{31}+\textrm{ZMod}(0) q^{29}</math> |
|||
|- align=center |
|||
|<math>\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}</math> |
|||
|<math>i=19</math> |
|||
|<math>i=21</math> |
|||
|<math>i=23</math> |
|||
|<math>i=25</math> |
|||
|<math>i=27</math> |
|||
|<math>i=29</math> |
|||
|<math>i=31</math> |
|||
|- align=center |
|||
|<math>r=0</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
|<math>{\mathbb Z}</math> |
|||
|<math>{\mathbb Z}</math> |
|||
|- align=center |
|||
|<math>r=1</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=2</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
|- align=center |
|||
|<math>r=3</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
|<math>{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}</math> |
|||
|- align=center |
|||
|<math>r=4</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
|<math>{\mathbb Z}</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
|- align=center |
|||
|<math>r=5</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
|<math>{\mathbb Z}</math> |
|||
|<math>{\mathbb Z}</math> |
|||
|- align=center |
|||
|<math>r=6</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
|<math>{\mathbb Z}</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=7</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
|<math>{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}\oplus{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
|- align=center |
|||
|<math>r=8</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
|<math>{\mathbb Z}^{2}</math> |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=9</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow| |
|||
|<math>{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|<math>{\mathbb Z}^{2}</math> |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=10</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow|<math>{\mathbb Z}</math> |
|||
|<math>{\mathbb Z}\oplus{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}_2</math> |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=11</math> |
|||
| |
|||
|bgcolor=yellow| |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=12</math> |
|||
| |
|||
|bgcolor=yellow|<math>{\mathbb Z}</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math> |
|||
|<math>{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=13</math> |
|||
| |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|<math>{\mathbb Z}^{2}</math> |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=14</math> |
|||
| |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2</math> |
|||
|<math>{\mathbb Z}_2</math> |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=15</math> |
|||
| |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2^{2}\oplus{\mathbb Z}_4</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2</math> |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=16</math> |
|||
|<math>{\mathbb Z}</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|<math>{\mathbb Z}</math> |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=17</math> |
|||
|<math>{\mathbb Z}_2</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math> |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=18</math> |
|||
|<math>{\mathbb Z}</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2^{2}</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2</math> |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=19</math> |
|||
|<math>{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2</math> |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=20</math> |
|||
|<math>{\mathbb Z}\oplus{\mathbb Z}_2</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2\oplus{\mathbb Z}_4</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}</math> |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=21</math> |
|||
|<math>{\mathbb Z}_4</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}</math> |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|- align=center |
|||
|<math>r=22</math> |
|||
|<math>{\mathbb Z}_2</math> |
|||
|bgcolor=yellow|<math>{\mathbb Z}_2</math> |
|||
|bgcolor=yellow| |
|||
| |
|||
| |
|||
| |
|||
| |
|||
|} |
Latest revision as of 09:01, 27 June 2006
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=19} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=21} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=25} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=27} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=29} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=31} | |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} | |||||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | ||||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | |||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=7} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | ||||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=9} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | |||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=10} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=11} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=12} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | |||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | |||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=14} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=15} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2^{2}\oplus{\mathbb Z}_4} | ||||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=17} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=18} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2^{2}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=19} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} | |||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=20} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2\oplus{\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | ||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=21} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | |||||
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=22} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} |