Article:Math.DG/0202178/unidentified-references: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<pre> |
<pre> |
||
M.F. Atiyah, V.K. Patodi, and I.M. Singer, \emph{Spectral asymmetry and {Riemannian} geometry: {I}}, Math.\ Proc.\ Camb.\ Phil.\ Soc. \textbf{77} (1975), 43--69. |
|||
Kim Fr{\o}yshov, \emph{The {S}eiberg-{W}itten equations and four-manifolds with boundary}, {Math. Res. Lett.}, \textbf{3} (1996), no.~3, 373--390. |
|||
Mikio Furuta, \emph{Monopole equation and the $\frac{11}{8}$-conjecture}, Preprint. |
|||
P.~Gilmer, \emph{Configurations of surfaces in 4-manifolds}, Trans.\ A.M.S. \textbf{264} (1981), 353--380. |
|||
Mutsumi Komuro, \emph{On {A}tiyah-{P}atodi-{S}inger $\eta $-invariant for ${S}\sp{1}$-bundles over {R}iemann surfaces}, J. Fac. Sci. Univ. Tokyo Sect. IA Math. \textbf{30} (1984), no.~3, 525--548. |
|||
P.B. Kronheimer and T.S. Mrowka, \emph{The genus of embedded surfaces in the projective plane}, Math.\ Res.\ Lett. \textbf{1} (1994), no.~6, 797--808. |
|||
Bang-He Li, \emph{Representing nonnegative homology classes of {${\bf C}{\rm P}\sp 2\#n\overline{{\bf C}{\rm P}}\,\sp 2$} by minimal genus smooth embeddings}, Trans. Amer. Math. Soc. \textbf{352} (2000), no.~9, 4155--4169. |
|||
Bang-He Li and Tian-Jun Li, \emph{Minimal genus smooth embeddings in ${S}\sp 2\times {S}\sp 2$ and \hbox{${\mathbf {CP}}^2\#n\overline{{\mathbf {CP}}}^2$} with $n\leq8$}, Topology \textbf{37} (1998), no.~3, 575--594. |
|||
R.B. Lockart and R.C. McOwen, \emph{Elliptic differential operators on non--compact manifolds}, Annali d. Scuola Norm. Sup. de Pisa (1985), 409--448. |
|||
Robert Lockhart, \emph{Fredholm, {H}odge and {L}iouville theorems on noncompact manifolds}, Trans. Amer. Math. Soc. \textbf{301} (1987), no.~1, 1--35. |
|||
J.~Morgan, T.~Mrowka, and D.~Ruberman, \emph{The ${L}^2$-moduli space and a vanishing theorem for {Donaldson} invariants}, Monographs in Geometry and Topology, vol.~2, International Press, 1994. |
|||
J.~Morgan, Z.~Szabo, and C.~Taubes, \emph{A product formula for the {Seiberg--Witten} invariants and the generalized {Thom} conjecture}, J. Diff.\ Geo. \textbf{44} (1996), 706--788. |
|||
John~W. Morgan, \emph{The {S}eiberg-{W}itten equations and applications to the topology of smooth four-manifolds}, Mathematical Notes, vol.~44, Princeton University Press, Princeton, NJ, 1996. |
|||
Tomasz Mrowka, Peter Ozsv{\'a}th, and Baozhen Yu, \emph{Seiberg-{W}itten monopoles on {S}eifert fibered spaces}, Comm. Anal. Geom. \textbf{5} (1997), no.~4, 685--791. |
|||
D.~Mumford, \emph{An algebraic surface with ${K}$\ ample, $({K}\sp{2})=9$, $p\sb{g}=q=0$}, Amer. J. Math. \textbf{101} (1979), no.~1, 233--244. |
|||
Liviu~I. Nicolaescu, \emph{Eta invariants of {D}irac operators on circle bundles over {R}iemann surfaces and virtual dimensions of finite energy {S}eiberg-{W}itten moduli spaces}, Israel J. Math. \textbf{114} (1999), 61--123. |
|||
Peter Ozsv{\'a}th and Zolt{\'a}n Szab{\'o}, \emph{The symplectic {T}hom conjecture}, Ann. of Math. (2) \textbf{151} (2000), no.~1, 93--124. |
|||
V.A. Rohlin, \emph{Two--dimensional submanifolds of four dimensional manifolds}, Functional Anal. and Appl. \textbf{5} (1971), 39--48. |
|||
D.~Ruberman, \emph{The minimal genus of an embedded surface of non-negative square in a rational surface}, Turkish J.\ Math. \textbf{20} (1996), 129--135. |
|||
D.~Salamon, \emph{Spin geometry and {S}eiberg-{W}itten invariants}, Preliminary version. |
|||
Clifford~Henry Taubes, \emph{The {S}eiberg-{W}itten invariants and symplectic forms}, Math. Res. Lett. \textbf{1} (1994), no.~6, 809--822. |
|||
C.~T.~C. Wall, \emph{Diffeomorphisms of 4-manifolds}, Jour.\ Lond.\ Math.\ Soc. \textbf{39} (1964), 131--140. |
|||
</pre> |
</pre> |
Latest revision as of 03:46, 17 September 2006
M.F. Atiyah, V.K. Patodi, and I.M. Singer, \emph{Spectral asymmetry and {Riemannian} geometry: {I}}, Math.\ Proc.\ Camb.\ Phil.\ Soc. \textbf{77} (1975), 43--69. Kim Fr{\o}yshov, \emph{The {S}eiberg-{W}itten equations and four-manifolds with boundary}, {Math. Res. Lett.}, \textbf{3} (1996), no.~3, 373--390. Mikio Furuta, \emph{Monopole equation and the $\frac{11}{8}$-conjecture}, Preprint. P.~Gilmer, \emph{Configurations of surfaces in 4-manifolds}, Trans.\ A.M.S. \textbf{264} (1981), 353--380. Mutsumi Komuro, \emph{On {A}tiyah-{P}atodi-{S}inger $\eta $-invariant for ${S}\sp{1}$-bundles over {R}iemann surfaces}, J. Fac. Sci. Univ. Tokyo Sect. IA Math. \textbf{30} (1984), no.~3, 525--548. P.B. Kronheimer and T.S. Mrowka, \emph{The genus of embedded surfaces in the projective plane}, Math.\ Res.\ Lett. \textbf{1} (1994), no.~6, 797--808. Bang-He Li, \emph{Representing nonnegative homology classes of {${\bf C}{\rm P}\sp 2\#n\overline{{\bf C}{\rm P}}\,\sp 2$} by minimal genus smooth embeddings}, Trans. Amer. Math. Soc. \textbf{352} (2000), no.~9, 4155--4169. Bang-He Li and Tian-Jun Li, \emph{Minimal genus smooth embeddings in ${S}\sp 2\times {S}\sp 2$ and \hbox{${\mathbf {CP}}^2\#n\overline{{\mathbf {CP}}}^2$} with $n\leq8$}, Topology \textbf{37} (1998), no.~3, 575--594. R.B. Lockart and R.C. McOwen, \emph{Elliptic differential operators on non--compact manifolds}, Annali d. Scuola Norm. Sup. de Pisa (1985), 409--448. Robert Lockhart, \emph{Fredholm, {H}odge and {L}iouville theorems on noncompact manifolds}, Trans. Amer. Math. Soc. \textbf{301} (1987), no.~1, 1--35. J.~Morgan, T.~Mrowka, and D.~Ruberman, \emph{The ${L}^2$-moduli space and a vanishing theorem for {Donaldson} invariants}, Monographs in Geometry and Topology, vol.~2, International Press, 1994. J.~Morgan, Z.~Szabo, and C.~Taubes, \emph{A product formula for the {Seiberg--Witten} invariants and the generalized {Thom} conjecture}, J. Diff.\ Geo. \textbf{44} (1996), 706--788. John~W. Morgan, \emph{The {S}eiberg-{W}itten equations and applications to the topology of smooth four-manifolds}, Mathematical Notes, vol.~44, Princeton University Press, Princeton, NJ, 1996. Tomasz Mrowka, Peter Ozsv{\'a}th, and Baozhen Yu, \emph{Seiberg-{W}itten monopoles on {S}eifert fibered spaces}, Comm. Anal. Geom. \textbf{5} (1997), no.~4, 685--791. D.~Mumford, \emph{An algebraic surface with ${K}$\ ample, $({K}\sp{2})=9$, $p\sb{g}=q=0$}, Amer. J. Math. \textbf{101} (1979), no.~1, 233--244. Liviu~I. Nicolaescu, \emph{Eta invariants of {D}irac operators on circle bundles over {R}iemann surfaces and virtual dimensions of finite energy {S}eiberg-{W}itten moduli spaces}, Israel J. Math. \textbf{114} (1999), 61--123. Peter Ozsv{\'a}th and Zolt{\'a}n Szab{\'o}, \emph{The symplectic {T}hom conjecture}, Ann. of Math. (2) \textbf{151} (2000), no.~1, 93--124. V.A. Rohlin, \emph{Two--dimensional submanifolds of four dimensional manifolds}, Functional Anal. and Appl. \textbf{5} (1971), 39--48. D.~Ruberman, \emph{The minimal genus of an embedded surface of non-negative square in a rational surface}, Turkish J.\ Math. \textbf{20} (1996), 129--135. D.~Salamon, \emph{Spin geometry and {S}eiberg-{W}itten invariants}, Preliminary version. Clifford~Henry Taubes, \emph{The {S}eiberg-{W}itten invariants and symplectic forms}, Math. Res. Lett. \textbf{1} (1994), no.~6, 809--822. C.~T.~C. Wall, \emph{Diffeomorphisms of 4-manifolds}, Jour.\ Lond.\ Math.\ Soc. \textbf{39} (1964), 131--140.