The Jones Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
<!--$$ Jones[Knot[6, 2]][q] $$--> |
<!--$$ Jones[Knot[6, 2]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
⚫ | |||
<tt>In[1]:=</tt> <code>Jones[Knot[6, 1]][q]</code> |
|||
{| |
|||
|<tt>Out[1]=</tt> |
|||
||<math>q^2-q+2-\frac{2}{q}+\frac{1}{q^2}-\frac{1}{q^3}+\frac{1}{q^4}</math> |
|||
|} |
|||
<!--END--> |
<!--END--> |
||
Line 19: | Line 15: | ||
<!--$$ Jones[Knot[9, 46]][q] $$--> |
<!--$$ Jones[Knot[9, 46]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
⚫ | |||
<tt>In[2]:=</tt> <code>Jones[Knot[6, 1]][q]</code> |
|||
{| |
|||
|<tt>Out[2]=</tt> |
|||
⚫ | |||
|} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 17:56, 22 August 2005
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}
Again:
In[1]:= Jones[Knot[6, 1]][q]
Out[1]= |
2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}
Again:
In[2]:= Jones[Knot[6, 1]][q]
Out[2]= |