The Jones Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 2: Line 2:


<!--$$ Jones[Knot[6, 2]][q] $$-->
<!--$$ Jones[Knot[6, 2]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit, see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}
<tt>In[1]:=</tt> <code>Jones[Knot[6, 1]][q]</code>
{|
|<tt>Out[1]=</tt>
||<math>q^2-q+2-\frac{2}{q}+\frac{1}{q^2}-\frac{1}{q^3}+\frac{1}{q^4}</math>
|}
<!--END-->
<!--END-->


Line 19: Line 15:


<!--$$ Jones[Knot[9, 46]][q] $$-->
<!--$$ Jones[Knot[9, 46]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit, see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}
<tt>In[2]:=</tt> <code>Jones[Knot[6, 1]][q]</code>
{|
|<tt>Out[2]=</tt>
||<math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
|}
<!--END-->
<!--END-->



Revision as of 17:56, 22 August 2005

The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:

q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}

Again:

In[1]:= Jones[Knot[6, 1]][q]

Out[1]=

2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}

Again:

In[2]:= Jones[Knot[6, 1]][q]

Out[2]=