The Jones Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<tt>Out[1]=</tt> <math>q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}</math> |
<tt>Out[1]=</tt> <math>q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}</math> |
||
<!--END--> |
<!--END--> |
||
Again: |
|||
<tt>In[1]:=</tt> <code>Jones[Knot[6, 1]][q]</code> |
|||
{| |
|||
|<tt>Out[1]=</tt> |
|||
||<math>q^2-q+2-\frac{2}{q}+\frac{1}{q^2}-\frac{1}{q^3}+\frac{1}{q^4}</math> |
|||
|} |
|||
<!--$$ Jones[Knot[9, 46]][q] $$--> |
<!--$$ Jones[Knot[9, 46]][q] $$--> |
||
Line 22: | Line 14: | ||
<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math> |
<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math> |
||
<!--END--> |
<!--END--> |
||
Again: |
|||
<tt>In[2]:=</tt> <code>Jones[Knot[6, 1]][q]</code> |
|||
{| |
|||
|<tt>Out[2]=</tt> |
|||
||<math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math> |
|||
|} |
Revision as of 18:10, 22 August 2005
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
In[1]:= Jones[Knot[6, 2]][q]
Out[1]=
In[2]:= Jones[Knot[9, 46]][q]
Out[2]=