Naming and Enumeration: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 13: Line 13:


<tt>Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.</tt>
<tt>Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.</tt>
|}
|}<!--END-->
<!--END-->


<!--$$?Link$$-->
<!--$$?Link$$-->
Line 22: Line 23:


<tt>Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.</tt>
<tt>Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.</tt>
|}
|}<!--END-->
<!--END-->


Thus, for example, let us verify that the knots [[6_1]] and [[9_46]] have the same Alexander polynomial:
Thus, for example, let us verify that the knots [[6_1]] and [[9_46]] have the same Alexander polynomial:


<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[4]:=</tt><code> Alexander[Knot[6, 1]][t]</code>

<tt>Out[4]=</tt> <math>-2 t+5-\frac{2}{t}</math>
<!--END-->
<!--END-->




<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[5]:=</tt><code> Alexander[Knot[9, 46]][t]</code>

<tt>Out[5]=</tt> <math>-2 t+5-\frac{2}{t}</math>
<!--END-->
<!--END-->



Revision as of 15:03, 23 August 2005

KnotTheory` comes loaded with some knot tables; currently, the Rolfsen table of prime knots with up to 10 crossings [Rolfsen], the Hoste-Thistlethwaite tables of prime knots with up to 16 crossings and the Thistlethwaite table of prime links with up to 11 crossings (see Further Knot Theory Software#Knotscape):

(For In[1] see Setup)

In[2]:= ?Knot

Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.

In[3]:= ?Link

Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.

Thus, for example, let us verify that the knots 6_1 and 9_46 have the same Alexander polynomial:

In[4]:= Alexander[Knot[6, 1]][t]

Out[4]=


In[5]:= Alexander[Knot[9, 46]][t]

Out[5]=

References

[Rolfsen] ^  D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.