The Jones Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 3: | Line 3: | ||
<!--$$ Jones[Knot[6, 3]][q] $$--> |
<!--$$ Jones[Knot[6, 3]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
{{InOut1|n=2}} |
|||
Jones[Knot[6, 3]][q] |
|||
{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki> -3 2 2 2 3 |
|||
<tt>Out[1]=</tt> <math>-q^3+2 q^2-2 q+3-\frac{2}{q}+\frac{2}{q^2}-\frac{1}{q^3}</math> |
|||
3 - q + -- - - - 2 q + 2 q - q |
|||
2 q |
|||
q</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$ Jones[Knot[9, 48]][q] $$--> |
<!--$$ Jones[Knot[9, 48]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
{{InOut1|n=3}} |
|||
Jones[Knot[9, 48]][q] |
|||
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 |
|||
<tt>Out[2]=</tt> <math>-2 q^6+3 q^5-4 q^4+6 q^3-4 q^2+4 q-3+\frac{1}{q}</math> |
|||
-3 + - + 4 q - 4 q + 6 q - 4 q + 3 q - 2 q |
|||
q</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$ Jones[Knot[10, 112]][q] $$--> |
<!--$$ Jones[Knot[10, 112]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
{{InOut1|n=4}} |
|||
Jones[Knot[10, 112]][q] |
|||
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -7 4 7 11 14 14 14 2 3 |
|||
<tt>Out[3]=</tt> <math>q^3-4 q^2+7 q-10+\frac{14}{q}-\frac{14}{q^2}+\frac{14}{q^3}-\frac{11}{q^4}+\frac{7}{q^5}-\frac{4}{q^6}+\frac{1}{q^7}</math> |
|||
-10 + q - -- + -- - -- + -- - -- + -- + 7 q - 4 q + q |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
Revision as of 22:30, 25 August 2005
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
In[2]:= |
Jones[Knot[6, 3]][q] |
Out[2]= | -3 2 2 2 3 3 - q + -- - - - 2 q + 2 q - q 2 q q |
In[3]:= |
Jones[Knot[9, 48]][q] |
Out[3]= | 1 2 3 4 5 6 -3 + - + 4 q - 4 q + 6 q - 4 q + 3 q - 2 q q |
In[4]:= |
Jones[Knot[10, 112]][q] |
Out[4]= | -7 4 7 11 14 14 14 2 3 -10 + q - -- + -- - -- + -- - -- + -- + 7 q - 4 q + q 6 5 4 3 2 q q q q q q |