DT (Dowker-Thistlethwaite) Codes: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				 (iamlonleymsn.com)  | 
				 (iamlonleymsn.com)  | 
				||
| Line 1: | Line 1: | ||
| ⚫ | |||
{{Manual TOC Sidebar}}  | 
  |||
| ⚫ | |||
<a href=' http://chrykne.info/ '> chrykne </a>  <br />   | 
|||
| ⚫ | |||
<a href=' http://bambulka.info/ ' > bambulka  </a> <br />   | 
  <a href=' http://bambulka.info/ ' > bambulka  </a> <br />   | 
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
</div>  | 
  </div>  | 
||
====Links====  | 
  |||
[[Image:DTCode4L7n2.gif|frame|center|A DT notation example, for the link [[L7n2]]]]  | 
  |||
DT Codes for links are defined in a similar way (see {{ref|DollHoste}}). Follow the same numbering process as for knots, except when you finish traversing one component, jump straight to the next. It is not difficult to see that there is always a choice of starting points along the components for which the resulting pairing is a pairing between odd and even numbers. (On the figure above one possible choice is indicated). Again, it is enough to only list the even numbers corresponding to <math>1, 3, 5, \ldots</math>; call the resulting list <math>\lambda</math>. (Above, <math>\lambda=(6,-8,-10,12,-14,2,-4)</math>). Notice that the odd indices are naturally subdivided into sublists according to the component of the link on which they lie, and this induces a subdivision of <math>\lambda</math> into sublists. Thus with the choices made in the figure above, the DT code for the link [[L7n2]] is <math>(6,-8\mid -10,12,-14,2,-4)</math>.  | 
  |||
<tt>KnotTheory`</tt> knows about DT codes for links:  | 
  |||
<!--$$DTCode[Link[7, NonAlternating, 2]]$$-->  | 
  |||
<!--Robot Land, no human edits to "END"-->  | 
  |||
{{InOut|  | 
  |||
n  = 7 |  | 
  |||
in = <nowiki>DTCode[Link[7, NonAlternating, 2]]</nowiki> |  | 
  |||
out= <nowiki>DTCode[{6, -8}, {-10, 12, -14, 2, -4}]</nowiki>}}  | 
  |||
<!--END-->  | 
  |||
<!--$$MultivariableAlexander[DTCode[{6, -8}, {-10, 12, -14, 2, -4}]][t]$$-->  | 
  |||
<!--Robot Land, no human edits to "END"-->  | 
  |||
{{InOut|  | 
  |||
n  = 8 |  | 
  |||
in = <nowiki>MultivariableAlexander[DTCode[{6, -8}, {-10, 12, -14, 2, -4}]][t]</nowiki> |  | 
  |||
out= <nowiki>-1 + t[1] + t[2] - t[1] t[2]</nowiki>}}  | 
  |||
<!--END-->  | 
  |||
{{note|DollHoste}} H. Doll and J. Hoste, ''A tabulation of oriented links'',  Mathematics of Computation '''57-196''' (1991) 747-761.  | 
  |||