3 1 Further Notes and Views: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
(add) |
|||
| Line 17: | Line 17: | ||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = Blue Trefoil Knot.png | |
||
| ⚫ | |||
| ⚫ | |||
}} |
}} |
||
| ⚫ | |||
| ⚫ | |||
<div class="NavFrame"><div class="NavHead">Further images...</div> |
<div class="NavFrame"><div class="NavHead">Further images...</div> |
||
<div class="NavContent"> |
<div class="NavContent"> |
||
{| style="background: transparent;" |
{| style="background: transparent;" |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
text = Celtic| |
|||
| ⚫ | |||
|- valign=top |
|- valign=top |
||
{{Knot View Template| |
{{Knot View Template| |
||
| Line 39: | Line 56: | ||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = DylansTrefoil_120.jpg | |
||
| ⚫ | |||
| ⚫ | |||
}} |
}} |
||
|- valign=top |
|- valign=top |
||
| Line 58: | Line 75: | ||
image = KenyanStone_160.jpg | |
image = KenyanStone_160.jpg | |
||
text = A Kenyan Stone [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KenyanStone.html]| |
text = A Kenyan Stone [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KenyanStone.html]| |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
}} |
}} |
||
|- valign=top |
|- valign=top |
||
| Line 92: | Line 92: | ||
image = RopeTrick_160.jpg | |
image = RopeTrick_160.jpg | |
||
text = Mike Hutchings' Rope Trick [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/RopeTrick/index.html]| |
text = Mike Hutchings' Rope Trick [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/RopeTrick/index.html]| |
||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = Auryn_120.gif | |
|||
| ⚫ | |||
}} |
}} |
||
|} |
|} |
||
Revision as of 22:47, 22 March 2010
The trefoil is perhaps the easiest knot to find in "nature", and is topologically equivalent to the interlaced form of the common Christian and pagan "triquetra" symbol [12]:
Logo of Caixa Geral de Depositos, Lisboa [1] |
A knot consists of two harts in Kolam [2] |
Further images...
A Knotted Box [3] |
A trefoil near the Hollander York Gallery [4] |
A Knotted Pencil [5] |
Thurston's Trefoil - Figure Eight Trick [6] |
Banco Do Brasil [7] |
A hagfish tying itself in a knot to escape capture. [8] |
A Kenyan Stone [9] | |
Mike Hutchings' Rope Trick [10] | |||
The NeverEnding Story logo is a connected sum of two trefoils. [11] |
Non-prime (compound) versions
For a configuration of two trefoils along a closed loop which is prime, see 10_120.

























