L11a193: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 193]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 193]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Line 50: | Line 59: | ||
{9, -1, 3, -2, 10, -8, 5, -7, 6, -4, 11, -5, 7, -6, 8, -3}]</nowiki></pre></td></tr> |
{9, -1, 3, -2, 10, -8, 5, -7, 6, -4, 11, -5, 7, -6, 8, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 193]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a193_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 193]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 193]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 193]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 193]], KnotSignature[Link[11, Alternating, 193]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 5}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 193]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 |
|||
-Sqrt[q] + 2 q - 6 q + 9 q - 14 q + 16 q - 17 q + |
-Sqrt[q] + 2 q - 6 q + 9 q - 14 q + 16 q - 17 q + |
||
15/2 17/2 19/2 21/2 23/2 |
15/2 17/2 19/2 21/2 23/2 |
||
16 q - 12 q + 8 q - 4 q + q</nowiki></pre></td></tr> |
16 q - 12 q + 8 q - 4 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 193]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 8 12 14 16 18 20 22 24 |
||
q + 2 q + 3 q + 5 q - q + 2 q + q - 3 q + 2 q - 4 q + |
q + 2 q + 3 q + 5 q - q + 2 q + q - 3 q + 2 q - 4 q + |
||
26 30 32 34 |
26 30 32 34 |
||
q - q + 2 q - q</nowiki></pre></td></tr> |
q - q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 193]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 3 5 |
||
1 3 2 2 z 6 z 5 z 2 z z 6 z 4 z z |
1 3 2 2 z 6 z 5 z 2 z z 6 z 4 z z |
||
---- - ---- + ---- + --- - --- + --- + ---- - -- - ---- + ---- + -- - |
---- - ---- + ---- + --- - --- + --- + ---- - -- - ---- + ---- + -- - |
||
Line 85: | Line 86: | ||
7 5 3 7 5 |
7 5 3 7 5 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 193]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 3 1 3 2 z 3 z 8 z 13 z 7 z |
||
a + -- + -- - ---- - ---- - ---- + --- + --- + --- + ---- + --- - |
a + -- + -- - ---- - ---- - ---- + --- + --- + --- + ---- + --- - |
||
6 4 7 5 3 11 9 7 5 3 |
6 4 7 5 3 11 9 7 5 3 |
||
Line 120: | Line 121: | ||
9 7 5 8 6 |
9 7 5 8 6 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 193]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
||
{0, -(---)} |
|||
48</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 193]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
4 6 -2 q q 6 8 8 2 10 2 |
4 6 -2 q q 6 8 8 2 10 2 |
||
5 q + 2 q + t + -- + -- + 5 q t + 4 q t + 9 q t + 6 q t + |
5 q + 2 q + t + -- + -- + 5 q t + 4 q t + 9 q t + 6 q t + |
Revision as of 11:47, 31 August 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a193's Link Presentations]
Planar diagram presentation | X8192 X10,4,11,3 X22,10,7,9 X16,6,17,5 X18,14,19,13 X20,16,21,15 X14,20,15,19 X12,22,13,21 X2738 X4,12,5,11 X6,18,1,17 |
Gauss code | {1, -9, 2, -10, 4, -11}, {9, -1, 3, -2, 10, -8, 5, -7, 6, -4, 11, -5, 7, -6, 8, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2 t(1)^2 t(2)^4-3 t(1) t(2)^4+t(2)^4-4 t(1)^2 t(2)^3+6 t(1) t(2)^3-3 t(2)^3+4 t(1)^2 t(2)^2-7 t(1) t(2)^2+4 t(2)^2-3 t(1)^2 t(2)+6 t(1) t(2)-4 t(2)+t(1)^2-3 t(1)+2}{t(1) t(2)^2}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -14 q^{9/2}+9 q^{7/2}-6 q^{5/2}+2 q^{3/2}+q^{23/2}-4 q^{21/2}+8 q^{19/2}-12 q^{17/2}+16 q^{15/2}-17 q^{13/2}+16 q^{11/2}-\sqrt{q}} (db) |
Signature | 5 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-9} +2 z^3 a^{-9} -z^7 a^{-7} -3 z^5 a^{-7} -z^3 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -6 z^3 a^{-5} -6 z a^{-5} -3 a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} +5 z a^{-3} +2 a^{-3} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -6 z^9 a^{-7} -4 z^9 a^{-9} -2 z^8 a^{-4} -4 z^8 a^{-6} -10 z^8 a^{-8} -8 z^8 a^{-10} -z^7 a^{-3} +2 z^7 a^{-5} +7 z^7 a^{-7} -6 z^7 a^{-9} -10 z^7 a^{-11} +7 z^6 a^{-4} +16 z^6 a^{-6} +22 z^6 a^{-8} +5 z^6 a^{-10} -8 z^6 a^{-12} +5 z^5 a^{-3} +12 z^5 a^{-5} +15 z^5 a^{-7} +24 z^5 a^{-9} +12 z^5 a^{-11} -4 z^5 a^{-13} -6 z^4 a^{-4} -8 z^4 a^{-6} -3 z^4 a^{-8} +8 z^4 a^{-10} +8 z^4 a^{-12} -z^4 a^{-14} -9 z^3 a^{-3} -23 z^3 a^{-5} -21 z^3 a^{-7} -14 z^3 a^{-9} -5 z^3 a^{-11} +2 z^3 a^{-13} -2 z^2 a^{-4} -6 z^2 a^{-6} -6 z^2 a^{-8} -5 z^2 a^{-10} -3 z^2 a^{-12} +7 z a^{-3} +13 z a^{-5} +8 z a^{-7} +3 z a^{-9} +z a^{-11} +3 a^{-4} +3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|