L11a393: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Link_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
{{Link Page|
{{Link Page|
n = 11 |
n = 11 |
Line 35: Line 44:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 393]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 393]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
Line 50: Line 59:
{11, -2, 4, -6, 5, -7, 3, -9, 8, -4, 6, -5, 7, -3}]</nowiki></pre></td></tr>
{11, -2, 4, -6, 5, -7, 3, -9, 8, -4, 6, -5, 7, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 393]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 393]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a393_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 393]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 393]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 393]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a393_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[11, Alternating, 393]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 393]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 2 3 4 5 6 7 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 393]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 393]], KnotSignature[Link[11, Alternating, 393]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 4}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 393]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 2 3 4 5 6 7 8
5 + q - - - 5 q + 9 q - 9 q + 11 q - 10 q + 7 q - 6 q + 3 q -
5 + q - - - 5 q + 9 q - 9 q + 11 q - 10 q + 7 q - 6 q + 3 q -
q
q
Line 68: Line 69:
9
9
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 393]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 393]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 2 4 6 8 10 12 14
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 2 4 6 8 10 12 14
7 + q + -- + -- + 7 q + 9 q + 7 q + 4 q + 4 q - 3 q - q -
7 + q + -- + -- + 7 q + 9 q + 7 q + 4 q + 4 q - 3 q - q -
4 2
4 2
Line 76: Line 77:
16 18 20 22 24 26
16 18 20 22 24 26
5 q - 4 q - 2 q - 2 q + q - q</nowiki></pre></td></tr>
5 q - 4 q - 2 q - 2 q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 393]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 393]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
5 18 20 3 2 7 8 2 5 z 20 z
5 18 20 3 2 7 8 2 5 z 20 z
7 - -- + -- - -- + -- - ----- + ----- - ----- + 5 z - ---- + ----- -
7 - -- + -- - -- + -- - ----- + ----- - ----- + 5 z - ---- + ----- -
Line 88: Line 89:
2 6 4 2 6 4 2 4
2 6 4 2 6 4 2 4
a a a a a a a a</nowiki></pre></td></tr>
a a a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 393]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 393]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 7 22 28 3 2 7 8 1 1
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 7 22 28 3 2 7 8 1 1
13 + a + -- + -- + -- - -- - ----- - ----- - ----- - ---- - ---- +
13 + a + -- + -- + -- - -- - ----- - ----- - ----- - ---- - ---- +
6 4 2 2 6 2 4 2 2 2 9 7
6 4 2 2 6 2 4 2 2 2 9 7
Line 123: Line 124:
a 6 4 2 5 3 a 4 2
a 6 4 2 5 3 a 4 2
a a a a a a a</nowiki></pre></td></tr>
a a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[11, Alternating, 393]], Vassiliev[3][Link[11, Alternating, 393]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 393]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 77
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
{0, --}
6</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 393]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
3 5 1 1 1 4 q q 4 q 5
3 5 1 1 1 4 q q 4 q 5
8 q + 4 q + ----- + ----- + ----- + ---- + -- + - + ---- + 4 q t +
8 q + 4 q + ----- + ----- + ----- + ---- + -- + - + ---- + 4 q t +

Revision as of 11:48, 31 August 2005

L11a392.gif

L11a392

L11a394.gif

L11a394

L11a393.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a393 at Knotilus!


Link Presentations

[edit Notes on L11a393's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,16,9,15 X18,12,19,11 X20,14,21,13 X12,20,13,19 X14,22,15,21 X8,18,5,17 X16,8,17,7 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, 4, -6, 5, -7, 3, -9, 8, -4, 6, -5, 7, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a393 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{u v w^5-u v w^4+u v w^3-u v w^2+u v w-u v-u w^5+2 u w^4-2 u w^3+2 u w^2-2 u w+2 u-2 v w^5+2 v w^4-2 v w^3+2 v w^2-2 v w+v+w^5-w^4+w^3-w^2+w-1}{\sqrt{u} \sqrt{v} w^{5/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^9+3 q^8-6 q^7+7 q^6-10 q^5+11 q^4-9 q^3+9 q^2+ q^{-2} -5 q- q^{-1} +5 }[/math] (db)
Signature 4 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -11 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-21 z^2 a^{-2} +20 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2-20 a^{-2} +18 a^{-4} -5 a^{-6} +7-8 a^{-2} z^{-2} +7 a^{-4} z^{-2} -2 a^{-6} z^{-2} +3 z^{-2} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +z^9 a^{-1} +5 z^9 a^{-3} +4 z^9 a^{-5} -z^8 a^{-2} +5 z^8 a^{-4} +7 z^8 a^{-6} +z^8-3 z^7 a^{-1} -18 z^7 a^{-3} -8 z^7 a^{-5} +7 z^7 a^{-7} -15 z^6 a^{-2} -34 z^6 a^{-4} -19 z^6 a^{-6} +7 z^6 a^{-8} -7 z^6-5 z^5 a^{-1} +2 z^5 a^{-3} -9 z^5 a^{-5} -10 z^5 a^{-7} +6 z^5 a^{-9} +42 z^4 a^{-2} +51 z^4 a^{-4} +16 z^4 a^{-6} -8 z^4 a^{-8} +3 z^4 a^{-10} +18 z^4+23 z^3 a^{-1} +44 z^3 a^{-3} +25 z^3 a^{-5} -3 z^3 a^{-7} -6 z^3 a^{-9} +z^3 a^{-11} -47 z^2 a^{-2} -37 z^2 a^{-4} -12 z^2 a^{-6} -22 z^2-24 z a^{-1} -45 z a^{-3} -21 z a^{-5} +3 z a^{-7} +3 z a^{-9} +28 a^{-2} +22 a^{-4} +7 a^{-6} + a^{-8} +13+8 a^{-1} z^{-1} +15 a^{-3} z^{-1} +7 a^{-5} z^{-1} - a^{-7} z^{-1} - a^{-9} z^{-1} -8 a^{-2} z^{-2} -7 a^{-4} z^{-2} -2 a^{-6} z^{-2} -3 z^{-2} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        32  1
11       74   -3
9      43    1
7     57     2
5    44      0
3   48       4
1  11        0
-1  4         4
-311          0
-51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a392.gif

L11a392

L11a394.gif

L11a394