L11a128: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 128]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 128]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Line 50: | Line 59: | ||
-3, 5, -4, 7, -8, 9, -7}]</nowiki></pre></td></tr> |
-3, 5, -4, 7, -8, 9, -7}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 128]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a128_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 128]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 128]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(15/2) 2 5 10 13 18 17 16 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 128]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 128]], KnotSignature[Link[11, Alternating, 128]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 128]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(15/2) 2 5 10 13 18 17 16 |
|||
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
||
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
Line 69: | Line 70: | ||
3/2 5/2 7/2 |
3/2 5/2 7/2 |
||
13 Sqrt[q] - 8 q + 4 q - q</nowiki></pre></td></tr> |
13 Sqrt[q] - 8 q + 4 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 128]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 2 -20 2 -16 6 2 7 3 2 5 |
||
2 - q - --- - q - --- + q + --- + --- + --- + -- + -- - -- - |
2 - q - --- - q - --- + q + --- + --- + --- + -- + -- - -- - |
||
22 18 14 12 10 8 4 2 |
22 18 14 12 10 8 4 2 |
||
Line 77: | Line 78: | ||
2 4 6 8 10 |
2 4 6 8 10 |
||
3 q - q + 2 q - 2 q + q</nowiki></pre></td></tr> |
3 q - q + 2 q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 128]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 3 |
||
2 a 7 a 7 a 2 a z 3 5 7 2 z |
2 a 7 a 7 a 2 a z 3 5 7 2 z |
||
--- - ---- + ---- - ---- - - + 6 a z - 15 a z + 9 a z - a z - ---- + |
--- - ---- + ---- - ---- - - + 6 a z - 15 a z + 9 a z - a z - ---- + |
||
Line 87: | Line 88: | ||
7 a z - 11 a z + 3 a z - -- + 4 a z - 3 a z + a z |
7 a z - 11 a z + 3 a z - -- + 4 a z - 3 a z + a z |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 128]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 |
||
2 4 6 8 2 a 7 a 7 a 2 a z |
2 4 6 8 2 a 7 a 7 a 2 a z |
||
2 + 8 a + 13 a + 8 a + 2 a - --- - ---- - ---- - ---- + - + 4 a z + |
2 + 8 a + 13 a + 8 a + 2 a - --- - ---- - ---- - ---- + - + 4 a z + |
||
Line 127: | Line 128: | ||
5 9 2 10 4 10 |
5 9 2 10 4 10 |
||
2 a z - a z - a z</nowiki></pre></td></tr> |
2 a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 128]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 9 1 1 1 4 1 6 5 |
||
{0, --} |
|||
24</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 128]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 9 1 1 1 4 1 6 5 |
|||
8 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
8 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
Revision as of 12:01, 31 August 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a128's Link Presentations]
Planar diagram presentation | X6172 X14,3,15,4 X16,10,17,9 X18,12,19,11 X10,18,11,17 X12,16,13,15 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,13,1,14 |
Gauss code | {1, -10, 2, -11}, {10, -1, 8, -9, 3, -5, 4, -6, 11, -2, 6, -3, 5, -4, 7, -8, 9, -7} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\left(v^2-v+1\right)^2 (u v-2 u-2 v+1)}{\sqrt{u} v^{5/2}}} (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^7-2 a^7 z^{-1} +3 z^3 a^5+9 z a^5+7 a^5 z^{-1} -3 z^5 a^3-11 z^3 a^3-15 z a^3-7 a^3 z^{-1} +z^7 a+4 z^5 a+7 z^3 a+6 z a+2 a z^{-1} -z^5 a^{-1} -2 z^3 a^{-1} -z a^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^{10}-a^2 z^{10}-2 a^5 z^9-6 a^3 z^9-4 a z^9-2 a^6 z^8-4 a^4 z^8-9 a^2 z^8-7 z^8-2 a^7 z^7-a^5 z^7+6 a^3 z^7-2 a z^7-7 z^7 a^{-1} -a^8 z^6+5 a^4 z^6+16 a^2 z^6-4 z^6 a^{-2} +8 z^6+6 a^7 z^5+11 a^5 z^5+5 a^3 z^5+12 a z^5+11 z^5 a^{-1} -z^5 a^{-3} +4 a^8 z^4+13 a^6 z^4+11 a^4 z^4-2 a^2 z^4+6 z^4 a^{-2} +2 z^4-6 a^7 z^3-17 a^5 z^3-15 a^3 z^3-9 a z^3-4 z^3 a^{-1} +z^3 a^{-3} -5 a^8 z^2-18 a^6 z^2-24 a^4 z^2-13 a^2 z^2-2 z^2 a^{-2} -4 z^2+4 a^7 z+16 a^5 z+15 a^3 z+4 a z+z a^{-1} +2 a^8+8 a^6+13 a^4+8 a^2+2-2 a^7 z^{-1} -7 a^5 z^{-1} -7 a^3 z^{-1} -2 a z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|