L11a244: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 244 | |
k = 244 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,3,-10,4,-11:2,-1,11,-2,5,-3,7,-6,8,-5,9,-4,6,-7,10,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,3,-10,4,-11:2,-1,11,-2,5,-3,7,-6,8,-5,9,-4,6,-7,10,-9/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 244]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 244]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[10, 8, 11, 7], X[12, 3, 13, 4], X[18, 5, 19, 6], |
|||
X[16, 12, 17, 11], X[14, 20, 15, 19], X[20, 14, 21, 13], |
X[16, 12, 17, 11], X[14, 20, 15, 19], X[20, 14, 21, 13], |
||
X[2, 15, 3, 16], X[22, 18, 7, 17], X[4, 21, 5, 22], X[6, 9, 1, 10]]</nowiki></ |
X[2, 15, 3, 16], X[22, 18, 7, 17], X[4, 21, 5, 22], X[6, 9, 1, 10]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{2, -1, 11, -2, 5, -3, 7, -6, 8, -5, 9, -4, 6, -7, 10, -9}]</nowiki></ |
{2, -1, 11, -2, 5, -3, 7, -6, 8, -5, 9, -4, 6, -7, 10, -9}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 244]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a244_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 244]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a244_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + ----- - ---- + ---- - ---- + ---- - ------- + 25 Sqrt[q] - |
-q + ----- - ---- + ---- - ---- + ---- - ------- + 25 Sqrt[q] - |
||
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
Line 69: | Line 105: | ||
3/2 5/2 7/2 9/2 |
3/2 5/2 7/2 9/2 |
||
18 q + 11 q - 5 q + q</nowiki></ |
18 q + 11 q - 5 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
3 + q - q + q + --- - --- + --- + -- - -- + -- - -- - 2 q - |
3 + q - q + q + --- - --- + --- + -- - -- + -- - -- - 2 q - |
||
14 12 10 8 6 4 2 |
14 12 10 8 6 4 2 |
||
Line 77: | Line 118: | ||
4 6 8 10 12 14 |
4 6 8 10 12 14 |
||
3 q + 5 q - 4 q + q + 2 q - q</nowiki></ |
3 q + 5 q - 4 q + q + 2 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
a 3 a 2 a 2 z 3 5 z 3 z 3 |
a 3 a 2 a 2 z 3 5 z 3 z 3 |
||
- - ---- + ---- - --- + 4 a z - 6 a z + a z + -- - ---- + 6 a z - |
- - ---- + ---- - --- + 4 a z - 6 a z + a z + -- - ---- + 6 a z - |
||
Line 88: | Line 134: | ||
3 3 5 3 2 z 5 3 5 7 |
3 3 5 3 2 z 5 3 5 7 |
||
4 a z + a z - ---- + 3 a z - 2 a z + a z |
4 a z + a z - ---- + 3 a z - 2 a z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 |
|||
2 4 a 3 a 2 a z 3 5 2 |
2 4 a 3 a 2 a z 3 5 2 |
||
1 + 3 a + 3 a - - - ---- - ---- + - + 7 a z + 8 a z + 14 z + |
1 + 3 a + 3 a - - - ---- - ---- + - + 7 a z + 8 a z + 14 z + |
||
Line 128: | Line 179: | ||
9 z 9 3 9 10 2 10 |
9 z 9 3 9 10 2 10 |
||
---- - 19 a z - 10 a z - 3 z - 3 a z |
---- - 19 a z - 10 a z - 3 z - 3 a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
14 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
14 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
2 14 6 12 6 12 5 10 4 8 4 8 3 6 3 |
2 14 6 12 6 12 5 10 4 8 4 8 3 6 3 |
||
Line 141: | Line 197: | ||
4 3 6 3 6 4 8 4 10 5 |
4 3 6 3 6 4 8 4 10 5 |
||
4 q t + 7 q t + q t + 4 q t + q t</nowiki></ |
4 q t + 7 q t + q t + 4 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:35, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a244's Link Presentations]
Planar diagram presentation | X8192 X10,8,11,7 X12,3,13,4 X18,5,19,6 X16,12,17,11 X14,20,15,19 X20,14,21,13 X2,15,3,16 X22,18,7,17 X4,21,5,22 X6,9,1,10 |
Gauss code | {1, -8, 3, -10, 4, -11}, {2, -1, 11, -2, 5, -3, 7, -6, 8, -5, 9, -4, 6, -7, 10, -9} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|