L11n441: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
Line 10: Line 10:
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Link Page|
{{Link Page|
n = 11 |
n = 11 |
t = n |
t = <nowiki>n</nowiki> |
k = 441 |
k = 441 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,-9,10,11,-3,-8,9,-10,8/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,-9,10,11,-3,-8,9,-10,8/goTop.html |
Line 42: Line 42:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 441]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, NonAlternating, 441]]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 441]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[11, NonAlternating, 441]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[18, 11, 19, 12], X[10, 3, 11, 4],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, NonAlternating, 441]]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Link[11, NonAlternating, 441]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[18, 11, 19, 12], X[10, 3, 11, 4],
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[19, 13, 20, 22],
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[19, 13, 20, 22],
X[15, 21, 16, 20], X[21, 17, 22, 16], X[12, 17, 9, 18]]</nowiki></pre></td></tr>
X[15, 21, 16, 20], X[21, 17, 22, 16], X[12, 17, 9, 18]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[11, NonAlternating, 441]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11},
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Link[11, NonAlternating, 441]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11},
{7, -6, -9, 10, 11, -3, -8, 9, -10, 8}]</nowiki></pre></td></tr>
{7, -6, -9, 10, 11, -3, -8, 9, -10, 8}]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 441]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n441_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 441]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 441]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 441]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:L11n441_ML.gif]]</td></tr><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(17/2) -(15/2) 6 6 12 9 11 9
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, NonAlternating, 441]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Link[11, NonAlternating, 441]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(17/2) -(15/2) 6 6 12 9 11 9
-q + q - ----- + ----- - ---- + ---- - ---- + ---- -
-q + q - ----- + ----- - ---- + ---- - ---- + ---- -
13/2 11/2 9/2 7/2 5/2 3/2
13/2 11/2 9/2 7/2 5/2 3/2
Line 68: Line 104:
6
6
------- + 3 Sqrt[q]
------- + 3 Sqrt[q]
Sqrt[q]</nowiki></pre></td></tr>
Sqrt[q]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 441]][q]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 4 7 12 18 16 18 13 6 4 4 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[11, NonAlternating, 441]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -28 4 7 12 18 16 18 13 6 4 4 2
q + --- + --- + --- + --- + --- + --- + --- + --- + --- - -- - -- -
q + --- + --- + --- + --- + --- + --- + --- + --- + --- - -- - -- -
26 24 22 20 18 16 14 12 10 8 6
26 24 22 20 18 16 14 12 10 8 6
Line 78: Line 119:
-- - -- - 3 q
-- - -- - 3 q
4 2
4 2
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 441]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 3 5 7 9
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Link[11, NonAlternating, 441]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 9 3 5 7 9
a 5 a 9 a 7 a 2 a 4 a 17 a 23 a 11 a a
a 5 a 9 a 7 a 2 a 4 a 17 a 23 a 11 a a
-- - ---- + ---- - ---- + ---- + --- - ----- + ----- - ----- + -- +
-- - ---- + ---- - ---- + ---- + --- - ----- + ----- - ----- + -- +
Line 90: Line 136:
3 5
3 5
3 a z</nowiki></pre></td></tr>
3 a z</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 441]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 441]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 9
2 4 6 8 a 5 a 9 a 7 a 2 a
2 4 6 8 a 5 a 9 a 7 a 2 a
4 + 24 a + 58 a + 60 a + 23 a + -- + ---- + ---- + ---- + ---- -
4 + 24 a + 58 a + 60 a + 23 a + -- + ---- + ---- + ---- + ---- -
Line 122: Line 173:
9 7 4 8 6 8 8 8 5 9 7 9
9 7 4 8 6 8 8 8 5 9 7 9
a z - 5 a z - 6 a z - a z - a z - a z</nowiki></pre></td></tr>
a z - 5 a z - 6 a z - a z - a z - a z</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 441]][q, t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 1 1 1 5 1 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Link[11, NonAlternating, 441]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 1 1 1 5 1 1
3 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ +
3 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ +
2 18 8 16 8 16 7 14 6 12 6 12 5
2 18 8 16 8 16 7 14 6 12 6 12 5
Line 137: Line 193:
---- + 3 q t
---- + 3 q t
2
2
q t</nowiki></pre></td></tr>
q t</nowiki></code></td></tr>
</table> }}
</table> }}

Revision as of 17:35, 1 September 2005

L11n440.gif

L11n440

L11n442.gif

L11n442

L11n441.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n441 at Knotilus!


Link Presentations

[edit Notes on L11n441's Link Presentations]

Planar diagram presentation X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X19,13,20,22 X15,21,16,20 X21,17,22,16 X12,17,9,18
Gauss code {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11}, {7, -6, -9, 10, 11, -3, -8, 9, -10, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n441 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{2 t(1) t(4)^3-t(1) t(2) t(4)^3+t(2) t(4)^3-t(1) t(3) t(4)^3-t(2) t(3) t(4)^3+t(3) t(4)^3-t(4)^3-2 t(1) t(4)^2+t(1) t(2) t(4)^2-t(2) t(4)^2+t(1) t(3) t(4)^2+2 t(2) t(3) t(4)^2-t(3) t(4)^2+2 t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)-t(1) t(3) t(4)-2 t(2) t(3) t(4)+t(3) t(4)-t(1)+t(1) t(2)-t(2)+t(1) t(3)-t(1) t(2) t(3)+2 t(2) t(3)-t(3)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -\frac{12}{q^{9/2}}+\frac{9}{q^{7/2}}-\frac{11}{q^{5/2}}+\frac{9}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{6}{q^{13/2}}+\frac{6}{q^{11/2}}+3 \sqrt{q}-\frac{6}{\sqrt{q}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^9 z^{-1} +2 a^9 z^{-3} -4 z a^7-11 a^7 z^{-1} -7 a^7 z^{-3} +6 z^3 a^5+20 z a^5+23 a^5 z^{-1} +9 a^5 z^{-3} -3 z^5 a^3-13 z^3 a^3-22 z a^3-17 a^3 z^{-1} -5 a^3 z^{-3} +3 z^3 a+6 z a+4 a z^{-1} +a z^{-3} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^9 z^7-6 a^9 z^5+14 a^9 z^3-2 a^9 z^{-3} -16 a^9 z+9 a^9 z^{-1} +a^8 z^8-a^8 z^6-10 a^8 z^4+26 a^8 z^2+7 a^8 z^{-2} -23 a^8+a^7 z^9+2 a^7 z^7-21 a^7 z^5+41 a^7 z^3-7 a^7 z^{-3} -39 a^7 z+23 a^7 z^{-1} +6 a^6 z^8-10 a^6 z^6-29 a^6 z^4+73 a^6 z^2+19 a^6 z^{-2} -60 a^6+a^5 z^9+12 a^5 z^7-47 a^5 z^5+51 a^5 z^3-9 a^5 z^{-3} -37 a^5 z+24 a^5 z^{-1} +5 a^4 z^8+a^4 z^6-44 a^4 z^4+75 a^4 z^2+18 a^4 z^{-2} -58 a^4+11 a^3 z^7-29 a^3 z^5+27 a^3 z^3-5 a^3 z^{-3} -16 a^3 z+12 a^3 z^{-1} +10 a^2 z^6-25 a^2 z^4+34 a^2 z^2+7 a^2 z^{-2} -24 a^2+3 a z^5+3 a z^3-a z^{-3} -2 a z+2 a z^{-1} +6 z^2+ z^{-2} -4 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
2         3-3
0        3 3
-2       74 -3
-4      431 2
-6     57   2
-8    74    3
-10   511     6
-12  11      0
-14  5       5
-1611        0
-181         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n440.gif

L11n440

L11n442.gif

L11n442