L11n441: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 441 | |
k = 441 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,-9,10,11,-3,-8,9,-10,8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-11:7,-6,-9,10,11,-3,-8,9,-10,8/goTop.html | |
||
| Line 42: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 441]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[18, 11, 19, 12], X[10, 3, 11, 4], |
|||
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[19, 13, 20, 22], |
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[19, 13, 20, 22], |
||
X[15, 21, 16, 20], X[21, 17, 22, 16], X[12, 17, 9, 18]]</nowiki></ |
X[15, 21, 16, 20], X[21, 17, 22, 16], X[12, 17, 9, 18]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{7, -6, -9, 10, 11, -3, -8, 9, -10, 8}]</nowiki></ |
{7, -6, -9, 10, 11, -3, -8, 9, -10, 8}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 441]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n441_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 441]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n441_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + q - ----- + ----- - ---- + ---- - ---- + ---- - |
-q + q - ----- + ----- - ---- + ---- - ---- + ---- - |
||
13/2 11/2 9/2 7/2 5/2 3/2 |
13/2 11/2 9/2 7/2 5/2 3/2 |
||
| Line 68: | Line 104: | ||
6 |
6 |
||
------- + 3 Sqrt[q] |
------- + 3 Sqrt[q] |
||
Sqrt[q]</nowiki></ |
Sqrt[q]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
q + --- + --- + --- + --- + --- + --- + --- + --- + --- - -- - -- - |
q + --- + --- + --- + --- + --- + --- + --- + --- + --- - -- - -- - |
||
26 24 22 20 18 16 14 12 10 8 6 |
26 24 22 20 18 16 14 12 10 8 6 |
||
| Line 78: | Line 119: | ||
-- - -- - 3 q |
-- - -- - 3 q |
||
4 2 |
4 2 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
a 5 a 9 a 7 a 2 a 4 a 17 a 23 a 11 a a |
a 5 a 9 a 7 a 2 a 4 a 17 a 23 a 11 a a |
||
-- - ---- + ---- - ---- + ---- + --- - ----- + ----- - ----- + -- + |
-- - ---- + ---- - ---- + ---- + --- - ----- + ----- - ----- + -- + |
||
| Line 90: | Line 136: | ||
3 5 |
3 5 |
||
3 a z</nowiki></ |
3 a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 441]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
2 4 6 8 a 5 a 9 a 7 a 2 a |
2 4 6 8 a 5 a 9 a 7 a 2 a |
||
4 + 24 a + 58 a + 60 a + 23 a + -- + ---- + ---- + ---- + ---- - |
4 + 24 a + 58 a + 60 a + 23 a + -- + ---- + ---- + ---- + ---- - |
||
| Line 122: | Line 173: | ||
9 7 4 8 6 8 8 8 5 9 7 9 |
9 7 4 8 6 8 8 8 5 9 7 9 |
||
a z - 5 a z - 6 a z - a z - a z - a z</nowiki></ |
a z - 5 a z - 6 a z - a z - a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
3 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
3 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
2 18 8 16 8 16 7 14 6 12 6 12 5 |
2 18 8 16 8 16 7 14 6 12 6 12 5 |
||
| Line 137: | Line 193: | ||
---- + 3 q t |
---- + 3 q t |
||
2 |
2 |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:35, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n441's Link Presentations]
| Planar diagram presentation | X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X19,13,20,22 X15,21,16,20 X21,17,22,16 X12,17,9,18 |
| Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11}, {7, -6, -9, 10, 11, -3, -8, 9, -10, 8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(4)^3-t(1) t(2) t(4)^3+t(2) t(4)^3-t(1) t(3) t(4)^3-t(2) t(3) t(4)^3+t(3) t(4)^3-t(4)^3-2 t(1) t(4)^2+t(1) t(2) t(4)^2-t(2) t(4)^2+t(1) t(3) t(4)^2+2 t(2) t(3) t(4)^2-t(3) t(4)^2+2 t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)-t(1) t(3) t(4)-2 t(2) t(3) t(4)+t(3) t(4)-t(1)+t(1) t(2)-t(2)+t(1) t(3)-t(1) t(2) t(3)+2 t(2) t(3)-t(3)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{12}{q^{9/2}}+\frac{9}{q^{7/2}}-\frac{11}{q^{5/2}}+\frac{9}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{6}{q^{13/2}}+\frac{6}{q^{11/2}}+3 \sqrt{q}-\frac{6}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-1} +2 a^9 z^{-3} -4 z a^7-11 a^7 z^{-1} -7 a^7 z^{-3} +6 z^3 a^5+20 z a^5+23 a^5 z^{-1} +9 a^5 z^{-3} -3 z^5 a^3-13 z^3 a^3-22 z a^3-17 a^3 z^{-1} -5 a^3 z^{-3} +3 z^3 a+6 z a+4 a z^{-1} +a z^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-6 a^9 z^5+14 a^9 z^3-2 a^9 z^{-3} -16 a^9 z+9 a^9 z^{-1} +a^8 z^8-a^8 z^6-10 a^8 z^4+26 a^8 z^2+7 a^8 z^{-2} -23 a^8+a^7 z^9+2 a^7 z^7-21 a^7 z^5+41 a^7 z^3-7 a^7 z^{-3} -39 a^7 z+23 a^7 z^{-1} +6 a^6 z^8-10 a^6 z^6-29 a^6 z^4+73 a^6 z^2+19 a^6 z^{-2} -60 a^6+a^5 z^9+12 a^5 z^7-47 a^5 z^5+51 a^5 z^3-9 a^5 z^{-3} -37 a^5 z+24 a^5 z^{-1} +5 a^4 z^8+a^4 z^6-44 a^4 z^4+75 a^4 z^2+18 a^4 z^{-2} -58 a^4+11 a^3 z^7-29 a^3 z^5+27 a^3 z^3-5 a^3 z^{-3} -16 a^3 z+12 a^3 z^{-1} +10 a^2 z^6-25 a^2 z^4+34 a^2 z^2+7 a^2 z^{-2} -24 a^2+3 a z^5+3 a z^3-a z^{-3} -2 a z+2 a z^{-1} +6 z^2+ z^{-2} -4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



