L11a376: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 376 | |
k = 376 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-10,3,-9,4,-8,5,-7:8,-1,10,-2,11,-3,6,-5,7,-6,9,-4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-10,3,-9,4,-8,5,-7:8,-1,10,-2,11,-3,6,-5,7,-6,9,-4/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 376]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 376]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[14, 3, 15, 4], X[16, 5, 17, 6], X[22, 7, 11, 8], |
|||
X[18, 10, 19, 9], X[20, 18, 21, 17], X[10, 20, 1, 19], |
X[18, 10, 19, 9], X[20, 18, 21, 17], X[10, 20, 1, 19], |
||
X[8, 11, 9, 12], X[6, 21, 7, 22], X[4, 13, 5, 14], X[2, 15, 3, 16]]</nowiki></ |
X[8, 11, 9, 12], X[6, 21, 7, 22], X[4, 13, 5, 14], X[2, 15, 3, 16]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{8, -1, 10, -2, 11, -3, 6, -5, 7, -6, 9, -4}]</nowiki></ |
{8, -1, 10, -2, 11, -3, 6, -5, 7, -6, 9, -4}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 376]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a376_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 376]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a376_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
||
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
||
| Line 70: | Line 106: | ||
6 3/2 |
6 3/2 |
||
------- - 3 Sqrt[q] + q |
------- - 3 Sqrt[q] + q |
||
Sqrt[q]</nowiki></ |
Sqrt[q]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-1 + q + --- + q - --- + --- - --- + --- + --- + -- - -- + -- + |
-1 + q + --- + q - --- + --- - --- + --- + --- + -- - -- + -- + |
||
24 20 18 16 14 12 8 6 4 |
24 20 18 16 14 12 8 6 4 |
||
| Line 78: | Line 119: | ||
2 4 |
2 4 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 |
|||
a a 3 5 7 3 3 3 |
a a 3 5 7 3 3 3 |
||
-(--) + -- + 2 a z - 2 a z - 8 a z + 5 a z + 3 a z - 5 a z - |
-(--) + -- + 2 a z - 2 a z - 8 a z + 5 a z + 3 a z - 5 a z - |
||
| Line 86: | Line 132: | ||
5 3 7 3 5 3 5 5 5 7 5 3 7 5 7 |
5 3 7 3 5 3 5 5 5 7 5 3 7 5 7 |
||
10 a z + 4 a z + a z - 4 a z - 5 a z + a z - a z - a z</nowiki></ |
10 a z + 4 a z + a z - 4 a z - 5 a z + a z - a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 |
|||
6 a a 3 5 7 9 11 |
6 a a 3 5 7 9 11 |
||
-a + -- + -- + 2 a z + a z - 8 a z - 4 a z + a z - 2 a z - |
-a + -- + -- + 2 a z + a z - 8 a z - 4 a z + a z - 2 a z - |
||
| Line 112: | Line 163: | ||
5 9 7 9 4 10 6 10 |
5 9 7 9 4 10 6 10 |
||
6 a z - 3 a z - a z - a z</nowiki></ |
6 a z - 3 a z - a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 20 8 18 7 16 7 16 6 14 6 14 5 |
4 2 20 8 18 7 16 7 16 6 14 6 14 5 |
||
| Line 127: | Line 183: | ||
---- + 4 t + --- + t + 2 q t + q t |
---- + 4 t + --- + t + 2 q t + q t |
||
4 2 |
4 2 |
||
q t q</nowiki></ |
q t q</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:35, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a376's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,3,15,4 X16,5,17,6 X22,7,11,8 X18,10,19,9 X20,18,21,17 X10,20,1,19 X8,11,9,12 X6,21,7,22 X4,13,5,14 X2,15,3,16 |
| Gauss code | {1, -11, 2, -10, 3, -9, 4, -8, 5, -7}, {8, -1, 10, -2, 11, -3, 6, -5, 7, -6, 9, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1) \left(t(2) t(1)^2+t(2)^2 t(1)-t(2) t(1)+t(1)+t(2)\right)}{t(1)^2 t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{14}{q^{9/2}}-\frac{15}{q^{7/2}}+\frac{12}{q^{5/2}}+q^{3/2}-\frac{10}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{12}{q^{11/2}}-3 \sqrt{q}+\frac{6}{\sqrt{q}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^7+4 z^3 a^7+5 z a^7+a^7 z^{-1} -z^7 a^5-5 z^5 a^5-10 z^3 a^5-8 z a^5-a^5 z^{-1} -z^7 a^3-4 z^5 a^3-5 z^3 a^3-2 z a^3+z^5 a+3 z^3 a+2 z a} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+5 z^5 a^9-2 z^3 a^9+z a^9-4 z^8 a^8+10 z^6 a^8-15 z^4 a^8+9 z^2 a^8-3 z^9 a^7+5 z^7 a^7-6 z^5 a^7+3 z^3 a^7-4 z a^7+a^7 z^{-1} -z^{10} a^6-5 z^8 a^6+19 z^6 a^6-29 z^4 a^6+14 z^2 a^6-a^6-6 z^9 a^5+15 z^7 a^5-18 z^5 a^5+13 z^3 a^5-8 z a^5+a^5 z^{-1} -z^{10} a^4-5 z^8 a^4+18 z^6 a^4-18 z^4 a^4+7 z^2 a^4-3 z^9 a^3+4 z^7 a^3+3 z^5 a^3-2 z^3 a^3+z a^3-4 z^8 a^2+10 z^6 a^2-5 z^4 a^2+z^2 a^2-3 z^7 a+9 z^5 a-7 z^3 a+2 z a-z^6+3 z^4-2 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



