L11n280: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 280 | |
k = 280 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:-2,-1,5,-3,-6,11:-8,2,4,-5,10,9,-7,6,-11,8,-9,7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:-2,-1,5,-3,-6,11:-8,2,4,-5,10,9,-7,6,-11,8,-9,7/goTop.html | |
||
Line 42: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 280]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[8, 4, 9, 3], X[2, 14, 3, 13], |
|||
X[14, 7, 15, 8], X[9, 18, 10, 19], X[17, 11, 18, 22], |
X[14, 7, 15, 8], X[9, 18, 10, 19], X[17, 11, 18, 22], |
||
Line 54: | Line 69: | ||
X[11, 21, 12, 20], X[21, 17, 22, 16], X[4, 15, 1, 16], |
X[11, 21, 12, 20], X[21, 17, 22, 16], X[4, 15, 1, 16], |
||
X[19, 10, 20, 5]]</nowiki></ |
X[19, 10, 20, 5]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{-8, 2, 4, -5, 10, 9, -7, 6, -11, 8, -9, 7}]</nowiki></ |
{-8, 2, 4, -5, 10, 9, -7, 6, -11, 8, -9, 7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 280]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n280_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 280]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n280_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>0</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
8 + q - -- + -- - -- + -- - - - 5 q + 2 q - q |
8 + q - -- + -- - -- + -- - - - 5 q + 2 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
q - q + --- + --- + --- + -- + -- + -- + -- - 4 q - q - q - q |
q - q + --- + --- + --- + -- + -- + -- + -- - 4 q - q - q - q |
||
14 12 10 8 6 4 2 |
14 12 10 8 6 4 2 |
||
q q q q q q q</nowiki></ |
q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
2 2 4 4 1 5 a 2 a 2 z 2 2 |
2 2 4 4 1 5 a 2 a 2 z 2 2 |
||
8 - -- - 8 a + 2 a + -- - ----- - ---- + ---- + 6 z - -- - 7 a z + |
8 - -- - 8 a + 2 a + -- - ----- - ---- + ---- + 6 z - -- - 7 a z + |
||
Line 80: | Line 126: | ||
4 2 4 2 4 4 4 2 6 |
4 2 4 2 4 4 4 2 6 |
||
2 a z + 2 z - 4 a z + a z - a z</nowiki></ |
2 a z + 2 z - 4 a z + a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 280]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-2 2 4 6 4 1 5 a 2 a 1 5 |
-2 2 4 6 4 1 5 a 2 a 1 5 |
||
7 + a + 10 a + 4 a - a - -- - ----- - ---- - ---- + ---- + --- + |
7 + a + 10 a + 4 a - a - -- - ----- - ---- - ---- + ---- + --- + |
||
Line 112: | Line 163: | ||
8 2 8 4 8 9 3 9 |
8 2 8 4 8 9 3 9 |
||
2 z + 5 a z + 3 a z + a z + a z</nowiki></ |
2 z + 5 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
q + - + 4 q + ------ + ------ + ----- + ----- + ----- + ----- + |
q + - + 4 q + ------ + ------ + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 |
||
Line 125: | Line 181: | ||
7 3 |
7 3 |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:37, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n280's Link Presentations]
Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X9,18,10,19 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X19,10,20,5 |
Gauss code | {1, -4, 3, -10}, {-2, -1, 5, -3, -6, 11}, {-8, 2, 4, -5, 10, 9, -7, 6, -11, 8, -9, 7} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1) (w-1) \left(w^2-w+1\right)}{\sqrt{u} \sqrt{v} w^{3/2}}} (db) |
Jones polynomial | (db) |
Signature | 0 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+3 a^5 z^7-9 a^5 z^5+5 a^5 z^3+3 a^4 z^8-7 a^4 z^6-a^4 z^2-2 a^4 z^{-2} +4 a^4+a^3 z^9+3 a^3 z^7-17 a^3 z^5+18 a^3 z^3+z^3 a^{-3} -12 a^3 z-2 z a^{-3} +5 a^3 z^{-1} + a^{-3} z^{-1} +5 a^2 z^8-15 a^2 z^6+15 a^2 z^4+2 z^4 a^{-2} -11 a^2 z^2-2 z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +10 a^2+ a^{-2} +a z^9+a z^7+z^7 a^{-1} -11 a z^5-3 z^5 a^{-1} +23 a z^3+11 z^3 a^{-1} -21 a z-11 z a^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} +2 z^8-7 z^6+14 z^4-9 z^2-4 z^{-2} +7} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|