L11a530: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 530 | |
k = 530 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,7,-11:9,-1,4,-5,10,-2,3,-6:11,-7,8,-4,6,-3,5,-8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,7,-11:9,-1,4,-5,10,-2,3,-6:11,-7,8,-4,6,-3,5,-8/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 530]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 530]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[20, 14, 21, 13], X[18, 10, 19, 9], |
|||
X[10, 22, 11, 21], X[14, 20, 7, 19], X[16, 5, 17, 6], |
X[10, 22, 11, 21], X[14, 20, 7, 19], X[16, 5, 17, 6], |
||
X[22, 18, 15, 17], X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 15, 1, 16]]</nowiki></ |
X[22, 18, 15, 17], X[2, 7, 3, 8], X[4, 11, 5, 12], X[6, 15, 1, 16]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{11, -7, 8, -4, 6, -3, 5, -8}]</nowiki></ |
{11, -7, 8, -4, 6, -3, 5, -8}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 530]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a530_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 530]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a530_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>0</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
24 + q - -- + -- - -- + -- - -- - 20 q + 16 q - 9 q + 4 q - q |
24 + q - -- + -- - -- + -- - -- - 20 q + 16 q - 9 q + 4 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
-1 + q + q - --- + --- + --- - --- + -- + -- + -- + -- + 6 q - |
-1 + q + q - --- + --- + --- - --- + -- + -- + -- + -- + 6 q - |
||
16 14 12 10 8 6 4 2 |
16 14 12 10 8 6 4 2 |
||
Line 74: | Line 115: | ||
4 6 8 10 12 14 16 |
4 6 8 10 12 14 16 |
||
3 q + q + 4 q - 4 q + 2 q + q - q</nowiki></ |
3 q + q + 4 q - 4 q + 2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
-2 2 6 -2 2 a a 2 z z 2 2 |
-2 2 6 -2 2 a a 2 z z 2 2 |
||
1 + a - 3 a + a + z - ---- + -- - 2 z - -- + -- + a z - |
1 + a - 3 a + a + z - ---- + -- - 2 z - -- + -- + a z - |
||
Line 86: | Line 132: | ||
3 a z - z + ---- + 3 a z - z |
3 a z - z + ---- + 3 a z - z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-2 2 4 6 -2 2 a a 2 a 2 a |
-2 2 4 6 -2 2 a a 2 a 2 a |
||
5 - a + 11 a + 5 a - a - z - ---- - -- + --- + ---- - 9 a z - |
5 - a + 11 a + 5 a - a - z - ---- - -- + --- + ---- - 9 a z - |
||
Line 127: | Line 178: | ||
2 8 4 8 7 z 9 3 9 10 2 10 |
2 8 4 8 7 z 9 3 9 10 2 10 |
||
12 a z + 6 a z + ---- + 12 a z + 5 a z + 2 z + 2 a z |
12 a z + 6 a z + ---- + 12 a z + 5 a z + 2 z + 2 a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
-- + 13 q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + |
-- + 13 q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + |
||
q 13 6 11 6 11 5 9 4 7 4 7 3 5 3 |
q 13 6 11 6 11 5 9 4 7 4 7 3 5 3 |
||
Line 140: | Line 196: | ||
5 3 7 3 7 4 9 4 11 5 |
5 3 7 3 7 4 9 4 11 5 |
||
3 q t + 6 q t + q t + 3 q t + q t</nowiki></ |
3 q t + 6 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:42, 1 September 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a530's Link Presentations]
Planar diagram presentation | X8192 X12,3,13,4 X20,14,21,13 X18,10,19,9 X10,22,11,21 X14,20,7,19 X16,5,17,6 X22,18,15,17 X2738 X4,11,5,12 X6,15,1,16 |
Gauss code | {1, -9, 2, -10, 7, -11}, {9, -1, 4, -5, 10, -2, 3, -6}, {11, -7, 8, -4, 6, -3, 5, -8} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+16 q^2-20 q+24-23 q^{-1} +20 q^{-2} -14 q^{-3} +9 q^{-4} -3 q^{-5} + q^{-6} } (db) |
Signature | 0 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6-3 z^2 a^4+a^4 z^{-2} +3 z^4 a^2+z^2 a^2-2 a^2 z^{-2} -3 a^2-z^6-z^4-2 z^2+ z^{-2} +1+2 z^4 a^{-2} +z^2 a^{-2} + a^{-2} -z^2 a^{-4} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+3 a^5 z^7-6 a^5 z^5+z^5 a^{-5} +3 a^5 z^3-z^3 a^{-5} +6 a^4 z^8-14 a^4 z^6+4 z^6 a^{-4} +15 a^4 z^4-5 z^4 a^{-4} -12 a^4 z^2+2 z^2 a^{-4} -a^4 z^{-2} +5 a^4+5 a^3 z^9-a^3 z^7+8 z^7 a^{-3} -18 a^3 z^5-11 z^5 a^{-3} +21 a^3 z^3+5 z^3 a^{-3} -9 a^3 z+2 a^3 z^{-1} +2 a^2 z^{10}+12 a^2 z^8+10 z^8 a^{-2} -34 a^2 z^6-14 z^6 a^{-2} +32 a^2 z^4+8 z^4 a^{-2} -23 a^2 z^2-2 z^2 a^{-2} -2 a^2 z^{-2} +11 a^2- a^{-2} +12 a z^9+7 z^9 a^{-1} -13 a z^7-z^7 a^{-1} -11 a z^5-11 z^5 a^{-1} +18 a z^3+6 z^3 a^{-1} -9 a z+2 a z^{-1} +2 z^{10}+16 z^8-37 z^6+27 z^4-12 z^2- z^{-2} +5} (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|