L11n112: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 112 | |
k = 112 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,-3,6,-5,9,-7,-2,11,8,-9,7,-8,3,-4,5,-6,4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,-3,6,-5,9,-7,-2,11,8,-9,7,-8,3,-4,5,-6,4/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 112]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[7, 18, 8, 19], X[19, 22, 20, 5], |
|||
X[9, 21, 10, 20], X[21, 9, 22, 8], X[11, 17, 12, 16], |
X[9, 21, 10, 20], X[21, 9, 22, 8], X[11, 17, 12, 16], |
||
X[17, 15, 18, 14], X[15, 11, 16, 10], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[17, 15, 18, 14], X[15, 11, 16, 10], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
7, -8, 3, -4, 5, -6, 4}]</nowiki></ |
7, -8, 3, -4, 5, -6, 4}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 112]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n112_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 112]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n112_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + q - ------- - Sqrt[q] + 2 q - 3 q + 3 q - |
-q + q - ------- - Sqrt[q] + 2 q - 3 q + 3 q - |
||
Sqrt[q] |
Sqrt[q] |
||
9/2 11/2 13/2 15/2 |
9/2 11/2 13/2 15/2 |
||
4 q + 3 q - 2 q + q</nowiki></ |
4 q + 3 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
2 + q + q + -- + q - 2 q - q + 2 q + 2 q + 2 q + 2 q - |
2 + q + q + -- + q - 2 q - q + 2 q + 2 q + 2 q + 2 q - |
||
4 |
4 |
||
Line 75: | Line 116: | ||
18 22 24 |
18 22 24 |
||
q - q - q</nowiki></ |
q - q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 4 6 5 2 a z 5 z 10 z 9 z 2 z |
1 4 6 5 2 a z 5 z 10 z 9 z 2 z |
||
---- - ---- + ---- - --- + --- + -- - --- + ---- - --- + 3 a z - ---- + |
---- - ---- + ---- - --- + --- + -- - --- + ---- - --- + 3 a z - ---- + |
||
Line 87: | Line 133: | ||
---- - ---- + a z + -- - -- |
---- - ---- + a z + -- - -- |
||
3 a 3 a |
3 a 3 a |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 112]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
1 + a + -- + -- + a - ---- - ---- - ---- - --- - --- + --- + ---- + |
1 + a + -- + -- + a - ---- - ---- - ---- - --- - --- + --- + ---- + |
||
6 4 7 5 3 a z z 7 5 |
6 4 7 5 3 a z z 7 5 |
||
Line 116: | Line 167: | ||
---- - ---- - ---- - ---- - a z - z - -- - -- - -- |
---- - ---- - ---- - ---- - a z - z - -- - -- - -- |
||
7 5 3 a 6 4 2 |
7 5 3 a 6 4 2 |
||
a a a a a a</nowiki></ |
a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
2 4 1 1 1 1 q 2 4 |
2 4 1 1 1 1 q 2 4 |
||
3 + 2 q + q + ----- + ----- + ----- + - + -- + 2 q t + 2 q t + |
3 + 2 q + q + ----- + ----- + ----- + - + -- + 2 q t + 2 q t + |
||
Line 128: | Line 184: | ||
10 5 12 5 12 6 14 6 16 7 |
10 5 12 5 12 6 14 6 16 7 |
||
q t + 2 q t + q t + q t + q t</nowiki></ |
q t + 2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:45, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n112's Link Presentations]
Planar diagram presentation | X6172 X12,4,13,3 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X4,14,1,13 |
Gauss code | {1, -10, 2, -11}, {10, -1, -3, 6, -5, 9, -7, -2, 11, 8, -9, 7, -8, 3, -4, 5, -6, 4} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}}} (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-2} -z^8 a^{-4} -z^8 a^{-6} -z^8-a z^7-2 z^7 a^{-1} -3 z^7 a^{-3} -4 z^7 a^{-5} -2 z^7 a^{-7} +7 z^6 a^{-2} +3 z^6 a^{-4} +z^6 a^{-6} -z^6 a^{-8} +6 z^6+6 a z^5+16 z^5 a^{-1} +20 z^5 a^{-3} +18 z^5 a^{-5} +8 z^5 a^{-7} -10 z^4 a^{-2} +2 z^4 a^{-4} +8 z^4 a^{-6} +4 z^4 a^{-8} -8 z^4-10 a z^3-33 z^3 a^{-1} -39 z^3 a^{-3} -24 z^3 a^{-5} -8 z^3 a^{-7} -7 z^2 a^{-4} -9 z^2 a^{-6} -4 z^2 a^{-8} +2 z^2+7 a z+22 z a^{-1} +27 z a^{-3} +16 z a^{-5} +4 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|