L11a9: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 9 | |
k = 9 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,9,-10,8,-4,6,-7,11,-2,3,-8,10,-9,7,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,9,-10,8,-4,6,-7,11,-2,3,-8,10,-9,7,-6/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 9]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 9]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[12, 6, 13, 5], |
|||
X[8, 4, 9, 3], X[22, 14, 5, 13], X[14, 22, 15, 21], |
X[8, 4, 9, 3], X[22, 14, 5, 13], X[14, 22, 15, 21], |
||
Line 56: | Line 71: | ||
X[18, 12, 19, 11], X[20, 10, 21, 9], X[10, 20, 11, 19], |
X[18, 12, 19, 11], X[20, 10, 21, 9], X[10, 20, 11, 19], |
||
X[2, 16, 3, 15]]</nowiki></ |
X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
3, -8, 10, -9, 7, -6}]</nowiki></ |
3, -8, 10, -9, 7, -6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 9]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a9_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 9]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a9_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
q - ---- + ------- - 14 Sqrt[q] + 17 q - 20 q + 18 q - |
q - ---- + ------- - 14 Sqrt[q] + 17 q - 20 q + 18 q - |
||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
Line 71: | Line 107: | ||
9/2 11/2 13/2 15/2 17/2 |
9/2 11/2 13/2 15/2 17/2 |
||
16 q + 12 q - 6 q + 3 q - q</nowiki></ |
16 q + 12 q - 6 q + 3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[11, Alternating, 9]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
5 - q + -- - -- + 3 q + 5 q + 4 q - 3 q - 5 q + 2 q - q + |
5 - q + -- - -- + 3 q + 5 q + 4 q - 3 q - 5 q + 2 q - q + |
||
6 2 |
6 2 |
||
Line 79: | Line 120: | ||
26 |
26 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 3 2 z 2 z 2 z z z z 2 z 3 z |
1 3 2 z 2 z 2 z z z z 2 z 3 z |
||
---- - ---- + --- - -- + --- - --- + - - -- + -- + ---- - a z + -- + |
---- - ---- + --- - -- + --- - --- + - - -- + -- + ---- - a z + -- + |
||
Line 91: | Line 137: | ||
---- + -- |
---- + -- |
||
3 a |
3 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-6 3 3 1 3 2 2 z 4 z 3 z z 8 z |
-6 3 3 1 3 2 2 z 4 z 3 z z 8 z |
||
-a - -- - -- + ---- + ---- + --- - --- - --- - --- - - + ---- + |
-a - -- - -- + ---- + ---- + --- - --- - --- - --- - - + ---- + |
||
Line 127: | Line 178: | ||
----- - ---- - ----- - ----- |
----- - ---- - ----- - ----- |
||
5 3 6 4 |
5 3 6 4 |
||
a a a a</nowiki></ |
a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 9]][q, t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
9 + 7 q + ----- + ----- + ----- + - + ---- + 10 q t + 7 q t + |
9 + 7 q + ----- + ----- + ----- + - + ---- + 10 q t + 7 q t + |
||
6 3 4 2 2 2 t 2 |
6 3 4 2 2 2 t 2 |
||
Line 138: | Line 194: | ||
10 5 12 5 12 6 14 6 14 7 16 7 18 8 |
10 5 12 5 12 6 14 6 14 7 16 7 18 8 |
||
4 q t + 8 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
4 q t + 8 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:47, 1 September 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a9's Link Presentations]
Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X22,14,5,13 X14,22,15,21 X18,12,19,11 X20,10,21,9 X10,20,11,19 X2,16,3,15 |
Gauss code | {1, -11, 5, -3}, {4, -1, 2, -5, 9, -10, 8, -4, 6, -7, 11, -2, 3, -8, 10, -9, 7, -6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (v-1) \left(4 v^2-7 v+4\right)}{\sqrt{u} v^{3/2}}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -16 q^{9/2}+18 q^{7/2}-20 q^{5/2}+\frac{1}{q^{5/2}}+17 q^{3/2}-\frac{4}{q^{3/2}}-q^{17/2}+3 q^{15/2}-6 q^{13/2}+12 q^{11/2}-14 \sqrt{q}+\frac{8}{\sqrt{q}}} (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^{-7} -z a^{-7} +z^5 a^{-5} +z^3 a^{-5} +2 z a^{-5} + a^{-5} z^{-1} +2 z^5 a^{-3} +2 z^3 a^{-3} -2 z a^{-3} -3 a^{-3} z^{-1} +z^5 a^{-1} -a z^3+z a^{-1} +2 a^{-1} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{-9} -4 z^5 a^{-9} +4 z^3 a^{-9} +3 z^8 a^{-8} -12 z^6 a^{-8} +16 z^4 a^{-8} -8 z^2 a^{-8} +4 z^9 a^{-7} -13 z^7 a^{-7} +13 z^5 a^{-7} -6 z^3 a^{-7} +2 z a^{-7} +2 z^{10} a^{-6} +3 z^8 a^{-6} -26 z^6 a^{-6} +34 z^4 a^{-6} -17 z^2 a^{-6} + a^{-6} +11 z^9 a^{-5} -29 z^7 a^{-5} +20 z^5 a^{-5} -7 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +2 z^{10} a^{-4} +12 z^8 a^{-4} -42 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} +3 a^{-4} +7 z^9 a^{-3} -3 z^7 a^{-3} -18 z^5 a^{-3} +13 z^3 a^{-3} +3 z a^{-3} -3 a^{-3} z^{-1} +12 z^8 a^{-2} -20 z^6 a^{-2} +a^2 z^4+11 z^4 a^{-2} -4 z^2 a^{-2} +3 a^{-2} +12 z^7 a^{-1} +4 a z^5-17 z^5 a^{-1} -2 a z^3+8 z^3 a^{-1} +z a^{-1} -2 a^{-1} z^{-1} +8 z^6-6 z^4} (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|