L11n360: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 360 | |
k = 360 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:-8,4,-7,6,-10,9:-4,-1,2,-5,-6,7,11,-2,3,8,-9,10/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:-8,4,-7,6,-10,9:-4,-1,2,-5,-6,7,11,-2,3,8,-9,10/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 360]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[5, 18, 6, 19], |
|||
X[8, 4, 9, 3], X[9, 21, 10, 20], X[19, 11, 20, 10], |
X[8, 4, 9, 3], X[9, 21, 10, 20], X[19, 11, 20, 10], |
||
Line 55: | Line 70: | ||
X[17, 14, 18, 15], X[15, 22, 16, 17], X[21, 16, 22, 5], |
X[17, 14, 18, 15], X[15, 22, 16, 17], X[21, 16, 22, 5], |
||
X[2, 12, 3, 11]]</nowiki></ |
X[2, 12, 3, 11]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{-4, -1, 2, -5, -6, 7, 11, -2, 3, 8, -9, 10}]</nowiki></ |
{-4, -1, 2, -5, -6, 7, 11, -2, 3, 8, -9, 10}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 360]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n360_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 360]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n360_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-3 - q + q + -- - -- + - + 3 q - 2 q + q |
-3 - q + q + -- - -- + - + 3 q - 2 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
2 - q - q - q + q + --- + --- + --- + -- + -- + -- + -- + |
2 - q - q - q + q + --- + --- + --- + -- + -- + -- + -- + |
||
14 12 10 8 6 4 2 |
14 12 10 8 6 4 2 |
||
Line 75: | Line 116: | ||
4 10 |
4 10 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
-2 2 4 6 -2 2 a a 2 z 2 2 |
-2 2 4 6 -2 2 a a 2 z 2 2 |
||
a - 4 a + 5 a - 2 a + z - ---- + -- - 2 z + -- - 3 a z + |
a - 4 a + 5 a - 2 a + z - ---- + -- - 2 z + -- - 3 a z + |
||
Line 84: | Line 130: | ||
4 2 6 2 4 2 4 4 4 |
4 2 6 2 4 2 4 4 4 |
||
5 a z - a z - z - a z + a z</nowiki></ |
5 a z - a z - z - a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 360]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-2 2 4 6 -2 2 a a 2 a 2 a z |
-2 2 4 6 -2 2 a a 2 a 2 a z |
||
3 - a + 13 a + 15 a + 5 a - z - ---- - -- + --- + ---- - - - |
3 - a + 13 a + 15 a + 5 a - z - ---- - -- + --- + ---- - - - |
||
Line 121: | Line 172: | ||
2 8 4 8 6 8 9 3 9 |
2 8 4 8 6 8 9 3 9 |
||
3 a z + 2 a z + a z + a z + a z</nowiki></ |
3 a z + 2 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
-- + - + q + ------ + ------ + ------ + ------ + ----- + ----- + |
-- + - + q + ------ + ------ + ------ + ------ + ----- + ----- + |
||
3 q 15 7 11 6 11 5 11 4 9 4 7 4 |
3 q 15 7 11 6 11 5 11 4 9 4 7 4 |
||
Line 135: | Line 191: | ||
2 t 2 3 2 3 3 5 3 7 4 |
2 t 2 3 2 3 3 5 3 7 4 |
||
--- + 2 q t + q t + 2 q t + q t + q t + q t |
--- + 2 q t + q t + 2 q t + q t + q t + q t |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:50, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n360's Link Presentations]
Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X5,18,6,19 X8493 X9,21,10,20 X19,11,20,10 X17,14,18,15 X15,22,16,17 X21,16,22,5 X2,12,3,11 |
Gauss code | {1, -11, 5, -3}, {-8, 4, -7, 6, -10, 9}, {-4, -1, 2, -5, -6, 7, 11, -2, 3, 8, -9, 10} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|