L10n96: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 96 | |
k = 96 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,-4,5:2,-1,-6,7:-5,4,-8,9,-3,10:-7,6,-10,8,-9,3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,-4,5:2,-1,-6,7:-5,4,-8,9,-3,10:-7,6,-10,8,-9,3/goTop.html | |
||
| Line 41: | Line 41: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, NonAlternating, 96]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[13, 15, 14, 20], X[3, 11, 4, 10], |
|||
X[9, 1, 10, 4], X[7, 17, 8, 16], X[15, 5, 16, 8], X[11, 19, 12, 18], |
X[9, 1, 10, 4], X[7, 17, 8, 16], X[15, 5, 16, 8], X[11, 19, 12, 18], |
||
X[19, 13, 20, 12], X[17, 9, 18, 14]]</nowiki></ |
X[19, 13, 20, 12], X[17, 9, 18, 14]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{-7, 6, -10, 8, -9, 3}]</nowiki></ |
{-7, 6, -10, 8, -9, 3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 96]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10n96_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 96]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10n96_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-3 q + 3 q - 7 q + 6 q - 8 q + 5 q - 5 q + |
-3 q + 3 q - 7 q + 6 q - 8 q + 5 q - 5 q + |
||
17/2 19/2 |
17/2 19/2 |
||
2 q - q</nowiki></ |
2 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
3 q + 2 q + 6 q + 7 q + 7 q + 11 q + 9 q + 11 q + 8 q + |
3 q + 2 q + 6 q + 7 q + 7 q + 11 q + 9 q + 11 q + 8 q + |
||
22 24 26 28 30 |
22 24 26 28 30 |
||
6 q + 6 q + 2 q + 2 q + q</nowiki></ |
6 q + 6 q + 2 q + 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
-(-----) + ----- - ----- + ----- - ---- + ---- - ---- + ---- - -- + |
-(-----) + ----- - ----- + ----- - ---- + ---- - ---- + ---- - -- + |
||
9 3 7 3 5 3 3 3 9 7 5 3 9 |
9 3 7 3 5 3 3 3 9 7 5 3 9 |
||
| Line 81: | Line 127: | ||
--- - ---- + --- + ---- - ---- + ---- - ---- |
--- - ---- + --- + ---- - ---- + ---- - ---- |
||
7 5 3 7 5 3 5 |
7 5 3 7 5 3 5 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[10, NonAlternating, 96]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-a + -- + -- + -- + ----- + ----- + ----- + ----- - ----- - ----- - |
-a + -- + -- + -- + ----- + ----- + ----- + ----- - ----- - ----- - |
||
8 6 4 9 3 7 3 5 3 3 3 8 2 6 2 |
8 6 4 9 3 7 3 5 3 3 3 8 2 6 2 |
||
| Line 109: | Line 160: | ||
---- - ---- - ---- - ---- - ---- - ---- - -- - -- |
---- - ---- - ---- - ---- - ---- - ---- - -- - -- |
||
8 6 4 9 7 5 8 6 |
8 6 4 9 7 5 8 6 |
||
a a a a a a a a</nowiki></ |
a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
3 q + 3 q + 3 q t + 4 q t + 4 q t + 3 q t + 3 q t + |
3 q + 3 q + 3 q t + 4 q t + 4 q t + 3 q t + 3 q t + |
||
| Line 118: | Line 174: | ||
16 7 18 7 20 8 |
16 7 18 7 20 8 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:57, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n96's Link Presentations]
| Planar diagram presentation | X6172 X2536 X13,15,14,20 X3,11,4,10 X9,1,10,4 X7,17,8,16 X15,5,16,8 X11,19,12,18 X19,13,20,12 X17,9,18,14 |
| Gauss code | {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -8, 9, -3, 10}, {-7, 6, -10, 8, -9, 3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u v w^2 x-u v w x^2+2 u v w x-u v w-u v x+u v+u w x^2-u w x+u x+v w^2 x-v w x+v w+w^2 x^2-w^2 x-w x^2+2 w x-w-x}{\sqrt{u} \sqrt{v} w x} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{19/2}+2 q^{17/2}-5 q^{15/2}+5 q^{13/2}-8 q^{11/2}+6 q^{9/2}-7 q^{7/2}+3 q^{5/2}-3 q^{3/2} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -2 z^5 a^{-5} +3 z^3 a^{-3} -9 z^3 a^{-5} +3 z^3 a^{-7} +8 z a^{-3} -16 z a^{-5} +9 z a^{-7} -z a^{-9} +5 a^{-3} z^{-1} -12 a^{-5} z^{-1} +9 a^{-7} z^{-1} -2 a^{-9} z^{-1} + a^{-3} z^{-3} -3 a^{-5} z^{-3} +3 a^{-7} z^{-3} - a^{-9} z^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-6} -z^8 a^{-8} -4 z^7 a^{-5} -6 z^7 a^{-7} -2 z^7 a^{-9} -3 z^6 a^{-4} -4 z^6 a^{-6} -3 z^6 a^{-8} -2 z^6 a^{-10} +15 z^5 a^{-5} +18 z^5 a^{-7} +2 z^5 a^{-9} -z^5 a^{-11} +9 z^4 a^{-4} +18 z^4 a^{-6} +13 z^4 a^{-8} +4 z^4 a^{-10} -6 z^3 a^{-3} -31 z^3 a^{-5} -26 z^3 a^{-7} +2 z^3 a^{-9} +3 z^3 a^{-11} -17 z^2 a^{-4} -33 z^2 a^{-6} -16 z^2 a^{-8} +13 z a^{-3} +28 z a^{-5} +21 z a^{-7} +3 z a^{-9} -3 z a^{-11} +13 a^{-4} +24 a^{-6} +11 a^{-8} - a^{-10} -6 a^{-3} z^{-1} -14 a^{-5} z^{-1} -12 a^{-7} z^{-1} -3 a^{-9} z^{-1} + a^{-11} z^{-1} -3 a^{-4} z^{-2} -6 a^{-6} z^{-2} -3 a^{-8} z^{-2} + a^{-3} z^{-3} +3 a^{-5} z^{-3} +3 a^{-7} z^{-3} + a^{-9} z^{-3} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



