L10a20: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 20 | |
k = 20 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,4,-8,6,-2,10,-5,7,-6,3,-4,5,-7,8,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,4,-8,6,-2,10,-5,7,-6,3,-4,5,-7,8,-3/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 20]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 20]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[20, 15, 5, 16], X[16, 7, 17, 8], |
|||
X[12, 18, 13, 17], X[14, 10, 15, 9], X[18, 14, 19, 13], |
X[12, 18, 13, 17], X[14, 10, 15, 9], X[18, 14, 19, 13], |
||
X[8, 19, 9, 20], X[2, 5, 3, 6], X[4, 12, 1, 11]]</nowiki></ |
X[8, 19, 9, 20], X[2, 5, 3, 6], X[4, 12, 1, 11]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
5, -7, 8, -3}]</nowiki></ |
5, -7, 8, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 20]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a20_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 20]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a20_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
q - ---- + ---- - ---- + ------- - 17 Sqrt[q] + 15 q - |
q - ---- + ---- - ---- + ------- - 17 Sqrt[q] + 15 q - |
||
7/2 5/2 3/2 Sqrt[q] |
7/2 5/2 3/2 Sqrt[q] |
||
Line 68: | Line 104: | ||
5/2 7/2 9/2 11/2 |
5/2 7/2 9/2 11/2 |
||
13 q + 9 q - 4 q + q</nowiki></ |
13 q + 9 q - 4 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
6 - q - -- + -- + -- + 5 q - 3 q + q - 3 q + 2 q - q |
6 - q - -- + -- + -- + 5 q - 3 q + q - 3 q + 2 q - q |
||
8 6 2 |
8 6 2 |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 4 4 a a 2 z 7 z 3 2 z 7 z |
1 4 4 a a 2 z 7 z 3 2 z 7 z |
||
---- - --- + --- - -- + --- - --- + 7 a z - 2 a z + ---- - ---- + |
---- - --- + --- - -- + --- - --- + 7 a z - 2 a z + ---- - ---- + |
||
Line 85: | Line 131: | ||
6 a z - a z + -- - ---- + 2 a z - -- |
6 a z - a z + -- - ---- + 2 a z - -- |
||
3 a a |
3 a a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-4 4 2 4 1 4 4 a a 4 z 13 z |
-4 4 2 4 1 4 4 a a 4 z 13 z |
||
7 + a + -- + 4 a + a - ---- - --- - --- - -- + --- + ---- + |
7 + a + -- + 4 a + a - ---- - --- - --- - -- + --- + ---- + |
||
Line 121: | Line 172: | ||
3 a z - 12 z - ---- - 4 a z - ---- - 2 a z |
3 a z - 12 z - ---- - 4 a z - ---- - 2 a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
10 + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
10 + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
10 5 8 4 6 4 6 3 4 3 4 2 2 2 |
10 5 8 4 6 4 6 3 4 3 4 2 2 2 |
||
Line 134: | Line 190: | ||
8 4 10 4 12 5 |
8 4 10 4 12 5 |
||
q t + 3 q t + q t</nowiki></ |
q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:03, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a20's Link Presentations]
Planar diagram presentation | X6172 X10,4,11,3 X20,15,5,16 X16,7,17,8 X12,18,13,17 X14,10,15,9 X18,14,19,13 X8,19,9,20 X2536 X4,12,1,11 |
Gauss code | {1, -9, 2, -10}, {9, -1, 4, -8, 6, -2, 10, -5, 7, -6, 3, -4, 5, -7, 8, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1)^3 \left(v^2-v+1\right)}{\sqrt{u} v^{5/2}}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11/2}-4 q^{9/2}+9 q^{7/2}-13 q^{5/2}+15 q^{3/2}-17 \sqrt{q}+\frac{14}{\sqrt{q}}-\frac{12}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}}} (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-6} +4 z^5 a^{-5} -z^3 a^{-5} +a^4 z^6+9 z^6 a^{-4} -3 a^4 z^4-9 z^4 a^{-4} +3 a^4 z^2+4 z^2 a^{-4} -a^4- a^{-4} +3 a^3 z^7+12 z^7 a^{-3} -8 a^3 z^5-18 z^5 a^{-3} +8 a^3 z^3+11 z^3 a^{-3} -4 a^3 z-4 z a^{-3} +a^3 z^{-1} + a^{-3} z^{-1} +4 a^2 z^8+8 z^8 a^{-2} -6 a^2 z^6-3 z^6 a^{-2} -4 a^2 z^4-14 z^4 a^{-2} +10 a^2 z^2+12 z^2 a^{-2} -4 a^2-4 a^{-2} +2 a z^9+2 z^9 a^{-1} +8 a z^7+17 z^7 a^{-1} -31 a z^5-45 z^5 a^{-1} +29 a z^3+33 z^3 a^{-1} -13 a z-13 z a^{-1} +4 a z^{-1} +4 a^{-1} z^{-1} +12 z^8-19 z^6-5 z^4+15 z^2-7} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|