L11a377: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 377 | |
k = 377 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-8,6,-9,3,-4,7,-10:4,-1,5,-2,8,-6,9,-7,10,-5,11,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-8,6,-9,3,-4,7,-10:4,-1,5,-2,8,-6,9,-7,10,-5,11,-3/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 377]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 377]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 7, 11, 8], X[8, 11, 9, 12], |
|||
X[20, 14, 21, 13], X[16, 6, 17, 5], X[18, 10, 19, 9], |
X[20, 14, 21, 13], X[16, 6, 17, 5], X[18, 10, 19, 9], |
||
X[4, 16, 5, 15], X[6, 18, 7, 17], X[10, 20, 1, 19], X[2, 21, 3, 22]]</nowiki></ |
X[4, 16, 5, 15], X[6, 18, 7, 17], X[10, 20, 1, 19], X[2, 21, 3, 22]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{4, -1, 5, -2, 8, -6, 9, -7, 10, -5, 11, -3}]</nowiki></ |
{4, -1, 5, -2, 8, -6, 9, -7, 10, -5, 11, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 377]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a377_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 377]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a377_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + ---- - ------- + 9 Sqrt[q] - 13 q + 14 q - 15 q + |
-q + ---- - ------- + 9 Sqrt[q] - 13 q + 14 q - 15 q + |
||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
Line 69: | Line 105: | ||
9/2 11/2 13/2 15/2 17/2 |
9/2 11/2 13/2 15/2 17/2 |
||
13 q - 10 q + 6 q - 3 q + q</nowiki></ |
13 q - 10 q + 6 q - 3 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
-1 + q - q + -- + q + 2 q - q + 5 q - 2 q + 3 q + 2 q - |
-1 + q - q + -- + q + 2 q - q + 5 q - 2 q + 3 q + 2 q - |
||
2 |
2 |
||
Line 77: | Line 118: | ||
20 22 24 |
20 22 24 |
||
2 q + q - q</nowiki></ |
2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 1 4 z 8 z 5 z 8 z 20 z 8 z 5 z 18 z |
1 1 4 z 8 z 5 z 8 z 20 z 8 z 5 z 18 z |
||
-(----) + --- + --- - --- + --- + ---- - ----- + ---- + ---- - ----- + |
-(----) + --- + --- - --- + --- + ---- - ----- + ---- + ---- - ----- + |
||
Line 89: | Line 135: | ||
---- + -- - ---- + -- - -- |
---- + -- - ---- + -- - -- |
||
a 5 3 a 3 |
a 5 3 a 3 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-2 1 1 z z 4 z 9 z 4 z 2 z |
-2 1 1 z z 4 z 9 z 4 z 2 z |
||
-a + ---- + --- - -- - -- - --- - --- - --- + a z + 4 z + --- - |
-a + ---- + --- - -- - -- - --- - --- - --- + a z + 4 z + --- - |
||
Line 125: | Line 176: | ||
---- - ---- - ----- - ----- |
---- - ---- - ----- - ----- |
||
3 a 4 2 |
3 a 4 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
2 4 1 2 1 2 4 5 4 q 4 |
2 4 1 2 1 2 4 5 4 q 4 |
||
8 q + 6 q + ----- + ----- + ----- + -- + ----- + - + ---- + 7 q t + |
8 q + 6 q + ----- + ----- + ----- + -- + ----- + - + ---- + 7 q t + |
||
Line 137: | Line 193: | ||
12 4 12 5 14 5 14 6 16 6 18 7 |
12 4 12 5 14 5 14 6 16 6 18 7 |
||
6 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
6 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:04, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a377's Link Presentations]
Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,7,11,8 X8,11,9,12 X20,14,21,13 X16,6,17,5 X18,10,19,9 X4,16,5,15 X6,18,7,17 X10,20,1,19 X2,21,3,22 |
Gauss code | {1, -11, 2, -8, 6, -9, 3, -4, 7, -10}, {4, -1, 5, -2, 8, -6, 9, -7, 10, -5, 11, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|