L11n21: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 21 | |
k = 21 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:-4,-1,2,-5,-8,10,-9,4,-6,7,11,-2,3,8,-10,9,-7,6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:-4,-1,2,-5,-8,10,-9,4,-6,7,11,-2,3,8,-10,9,-7,6/goTop.html | |
||
| Line 42: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[5, 12, 6, 13], |
|||
X[8, 4, 9, 3], X[13, 22, 14, 5], X[21, 14, 22, 15], X[9, 18, 10, 19], |
X[8, 4, 9, 3], X[13, 22, 14, 5], X[21, 14, 22, 15], X[9, 18, 10, 19], |
||
X[11, 20, 12, 21], X[19, 10, 20, 11], X[2, 16, 3, 15]]</nowiki></ |
X[11, 20, 12, 21], X[19, 10, 20, 11], X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
-2, 3, 8, -10, 9, -7, 6}]</nowiki></ |
-2, 3, 8, -10, 9, -7, 6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 21]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n21_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 21]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n21_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
||
| Line 69: | Line 105: | ||
---- |
---- |
||
3/2 |
3/2 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-q - --- - --- - --- + q + --- + --- + --- + q + --- + -- - |
-q - --- - --- - --- + q + --- + --- + --- + q + --- + -- - |
||
28 26 22 18 16 14 10 8 |
28 26 22 18 16 14 10 8 |
||
| Line 79: | Line 120: | ||
q + -- |
q + -- |
||
4 |
4 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 9 |
|||
a a 4 a 2 a 3 5 7 9 3 3 |
a a 4 a 2 a 3 5 7 9 3 3 |
||
-(--) - -- + ---- - ---- - 3 a z - a z + 6 a z - 2 a z - 2 a z + |
-(--) - -- + ---- - ---- - 3 a z - a z + 6 a z - 2 a z - 2 a z + |
||
| Line 87: | Line 133: | ||
5 3 7 3 9 3 5 5 7 5 |
5 3 7 3 9 3 5 5 7 5 |
||
a z + 3 a z - a z + a z + a z</nowiki></ |
a z + 3 a z - a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 21]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
4 6 8 10 12 a a 4 a 2 a 3 |
4 6 8 10 12 a a 4 a 2 a 3 |
||
a - 5 a - 6 a + a + 2 a - -- + -- + ---- + ---- + 3 a z - |
a - 5 a - 6 a + a + 2 a - -- + -- + ---- + ---- + 3 a z - |
||
| Line 110: | Line 161: | ||
8 8 10 8 7 9 9 9 |
8 8 10 8 7 9 9 9 |
||
4 a z - 2 a z - a z - a z</nowiki></ |
4 a z - 2 a z - a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
||
| Line 125: | Line 181: | ||
----- + ---- |
----- + ---- |
||
6 2 4 |
6 2 4 |
||
q t q t</nowiki></ |
q t q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 18:05, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n21's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X13,22,14,5 X21,14,22,15 X9,18,10,19 X11,20,12,21 X19,10,20,11 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {-4, -1, 2, -5, -8, 10, -9, 4, -6, 7, 11, -2, 3, 8, -10, 9, -7, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{8}{q^{9/2}}-\frac{8}{q^{7/2}}+\frac{4}{q^{5/2}}-\frac{2}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{5}{q^{17/2}}-\frac{7}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{10}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)-2 a^9 z-2 a^9 z^{-1} +a^7 z^5+3 a^7 z^3+6 a^7 z+4 a^7 z^{-1} +a^5 z^5+a^5 z^3-a^5 z-a^5 z^{-1} -2 a^3 z^3-3 a^3 z-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^6-4 a^{12} z^4+5 a^{12} z^2-2 a^{12}+2 a^{11} z^7-6 a^{11} z^5+4 a^{11} z^3+a^{11} z+2 a^{10} z^8-3 a^{10} z^6-4 a^{10} z^4+6 a^{10} z^2-a^{10}+a^9 z^9+a^9 z^7-3 a^9 z^5-6 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +4 a^8 z^8-6 a^8 z^6+4 a^8 z^4-11 a^8 z^2+6 a^8+a^7 z^9+a^7 z^7+4 a^7 z^5-15 a^7 z^3+11 a^7 z-4 a^7 z^{-1} +2 a^6 z^8-a^6 z^6+6 a^6 z^4-11 a^6 z^2+5 a^6+2 a^5 z^7+a^5 z^5-2 a^5 z^3+3 a^5 z-a^5 z^{-1} +a^4 z^6+2 a^4 z^4+a^4 z^2-a^4+3 a^3 z^3-3 a^3 z+a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



