L11a454: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 11 |  | 
  n = 11 |  | 
||
t =   | 
  t = a |  | 
||
k = 454 |  | 
  k = 454 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,4,-9,6,-7,3,-8:11,-2,7,-6,5,-4,8,-3,9,-5/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,4,-9,6,-7,3,-8:11,-2,7,-6,5,-4,8,-3,9,-5/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 44: | Line 52: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | 
||
| ⚫ | |||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 454]]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[20, 12, 21, 11], X[18, 8, 19, 7],   | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 454]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[20, 12, 21, 11], X[18, 8, 19, 7],   | 
  |||
  X[22, 18, 13, 17], X[16, 9, 17, 10], X[10, 15, 11, 16],   | 
    X[22, 18, 13, 17], X[16, 9, 17, 10], X[10, 15, 11, 16],   | 
||
  X[12, 20, 5, 19], X[8, 22, 9, 21], X[2, 5, 3, 6], X[4, 13, 1, 14]]</nowiki></  | 
    X[12, 20, 5, 19], X[8, 22, 9, 21], X[2, 5, 3, 6], X[4, 13, 1, 14]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
  {11, -2, 7, -6, 5, -4, 8, -3, 9, -5}]</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, -3, -4, -3, -5, -4, -3, 2, -1, 2, -3, 2, 4, -3, 5, 4, -3,   | 
||
| ⚫ | |||
   2}]</nowiki></pre></td></tr>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 454]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L11a454_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
</table>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 454]]</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>0</nowiki></pre></td></tr>  | 
||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 454]][q]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L11a454_ML.gif]]</td></tr><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>0</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
  |||
| ⚫ | |||
25 + q   - -- + -- - -- + -- - -- - 21 q + 17 q  - 10 q  + 4 q  - q  | 
  25 + q   - -- + -- - -- + -- - -- - 21 q + 17 q  - 10 q  + 4 q  - q  | 
||
            5    4    3    2   q  | 
              5    4    3    2   q  | 
||
           q    q    q    q</nowiki></  | 
             q    q    q    q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
| ⚫ | |||
q    + q    - --- + --- + --- - --- + -- + -- + -- + -- + 7 q  - 3 q  +   | 
  q    + q    - --- + --- + --- - --- + -- + -- + -- + -- + 7 q  - 3 q  +   | 
||
               16    14    12    10    8    6    4    2  | 
                 16    14    12    10    8    6    4    2  | 
||
| Line 115: | Line 86: | ||
     8      10      12    14    16  | 
       8      10      12    14    16  | 
||
  3 q  - 5 q   + 2 q   + q   - q</nowiki></  | 
    3 q  - 5 q   + 2 q   + q   - q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
| ⚫ | |||
     -2      2    4    6    -2   2 a    a       2   z     2  2  | 
       -2      2    4    6    -2   2 a    a       2   z     2  2  | 
||
4 - a   - 3 a  - a  + a  + z   - ---- + -- + 2 z  - -- + a  z  -   | 
  4 - a   - 3 a  - a  + a  + z   - ---- + -- + 2 z  - -- + a  z  -   | 
||
| Line 132: | Line 98: | ||
  3 a  z  + ---- + 3 a  z  - z  | 
    3 a  z  + ---- + 3 a  z  - z  | 
||
              2  | 
                2  | 
||
             a</nowiki></  | 
               a</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
| ⚫ | |||
     3        2      4    6    -2   2 a    a    2 a   2 a    2 z  | 
       3        2      4    6    -2   2 a    a    2 a   2 a    2 z  | 
||
11 + -- + 11 a  + 3 a  - a  - z   - ---- - -- + --- + ---- - --- -   | 
  11 + -- + 11 a  + 3 a  - a  - z   - ---- - -- + --- + ---- - --- -   | 
||
| Line 182: | Line 143: | ||
     3  9      10      2  10  | 
       3  9      10      2  10  | 
||
  5 a  z  + 2 z   + 2 a  z</nowiki></  | 
    5 a  z  + 2 z   + 2 a  z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 454]][q, t]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
| ⚫ | |||
-- + 14 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +   | 
  -- + 14 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +   | 
||
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3  | 
  q            13  6    11  5    9  5    9  4    7  4    7  3    5  3  | 
||
| Line 200: | Line 156: | ||
     5  3      7  3    7  4      9  4    11  5  | 
       5  3      7  3    7  4      9  4    11  5  | 
||
  3 q  t  + 7 q  t  + q  t  + 3 q  t  + q   t</nowiki></  | 
    3 q  t  + 7 q  t  + q  t  + 3 q  t  + q   t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Revision as of 17:59, 2 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L11a454's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X20,12,21,11 X18,8,19,7 X22,18,13,17 X16,9,17,10 X10,15,11,16 X12,20,5,19 X8,22,9,21 X2536 X4,13,1,14 | 
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -9, 6, -7, 3, -8}, {11, -2, 7, -6, 5, -4, 8, -3, 9, -5} | 
| A Braid Representative | |||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 0 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



