L10a50: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 10 |  | 
  n = 10 |  | 
||
t =   | 
  t = a |  | 
||
k = 50 |  | 
  k = 50 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,5,-3:4,-1,2,-10,9,-4,6,-8,7,-5,10,-2,3,-7,8,-6/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,5,-3:4,-1,2,-10,9,-4,6,-8,7,-5,10,-2,3,-7,8,-6/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 43: | Line 53: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | 
||
| ⚫ | |||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, Alternating, 50]]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[10, 5, 11, 6],   | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 50]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[10, 5, 11, 6],   | 
  |||
  X[14, 3, 15, 4], X[20, 11, 5, 12], X[18, 13, 19, 14],   | 
    X[14, 3, 15, 4], X[20, 11, 5, 12], X[18, 13, 19, 14],   | 
||
  X[12, 19, 13, 20], X[2, 9, 3, 10], X[8, 15, 9, 16]]</nowiki></  | 
    X[12, 19, 13, 20], X[2, 9, 3, 10], X[8, 15, 9, 16]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
   3, -7, 8, -6}]</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[8, {1, -2, -3, -4, 5, -4, 3, 2, -1, -3, 2, -4, -3, -4, -5, 6, 5, -4,   | 
||
| ⚫ | |||
   3, -  | 
     7, -6, -5, -4, 3, -2, -4, 5, -4, 3, -4, 6, -5, -4, -7, -6}]</nowiki></pre></td></tr>  | 
||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 50]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L10a50_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr>  | 
||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 50]][q]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L10a50_ML.gif]]</td></tr><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
  |||
| ⚫ | |||
-q        + ----- - ----- + ----- - ----- + ----- - ----- + ---- -   | 
  -q        + ----- - ----- + ----- - ----- + ----- - ----- + ---- -   | 
||
             21/2    19/2    17/2    15/2    13/2    11/2    9/2  | 
               21/2    19/2    17/2    15/2    13/2    11/2    9/2  | 
||
| Line 106: | Line 84: | ||
  ---- + ---- - q  | 
    ---- + ---- - q  | 
||
   7/2    5/2  | 
     7/2    5/2  | 
||
  q      q</nowiki></  | 
    q      q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
| ⚫ | |||
q    - q    - --- - --- - q    + --- + q    + --- + --- + --- + --- -   | 
  q    - q    - --- - --- - q    + --- + q    + --- + --- + --- + --- -   | 
||
               32    28           24           20    18    16    14  | 
                 32    28           24           20    18    16    14  | 
||
| Line 121: | Line 94: | ||
  q    + --- + q   - -- + q  | 
    q    + --- + q   - -- + q  | 
||
          10          6  | 
            10          6  | 
||
         q           q</nowiki></  | 
           q           q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   5       9    11  | 
|||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>   5       9    11  | 
  |||
  a     2 a    a        5        7        9      11      3  3  | 
    a     2 a    a        5        7        9      11      3  3  | 
||
-(--) + ---- - --- - 3 a  z - 2 a  z + 2 a  z + a   z - a  z  -   | 
  -(--) + ---- - --- - 3 a  z - 2 a  z + 2 a  z + a   z - a  z  -   | 
||
| Line 134: | Line 102: | ||
     5  3      7  3    9  3  | 
       5  3      7  3    9  3  | 
||
  3 a  z  - 3 a  z  - a  z</nowiki></  | 
    3 a  z  - 3 a  z  - a  z</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
| ⚫ | |||
  6      8      10      12   a    2 a    a        5        9  | 
    6      8      10      12   a    2 a    a        5        9  | 
||
-a  + 3 a  + 5 a   + 2 a   + -- - ---- - --- - 3 a  z + 4 a  z +   | 
  -a  + 3 a  + 5 a   + 2 a   + -- - ---- - --- - 3 a  z + 4 a  z +   | 
||
| Line 162: | Line 125: | ||
     9  9      11  9  | 
       9  9      11  9  | 
||
  2 a  z  - 2 a   z</nowiki></  | 
    2 a  z  - 2 a   z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 50]][q, t]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
| ⚫ | |||
q   + q   + ------- + ------ + ------ + ------ + ------ + ------ +   | 
  q   + q   + ------- + ------ + ------ + ------ + ------ + ------ +   | 
||
             24  10    22  9    20  9    20  8    18  8    18  7  | 
               24  10    22  9    20  9    20  8    18  8    18  7  | 
||
| Line 182: | Line 140: | ||
  ------ + ----- + ----- + ----- + ----  | 
    ------ + ----- + ----- + ----- + ----  | 
||
   10  3    8  3    8  2    6  2    4  | 
     10  3    8  3    8  2    6  2    4  | 
||
  q   t    q  t    q  t    q  t    q  t</nowiki></  | 
    q   t    q  t    q  t    q  t    q  t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Revision as of 18:18, 2 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a50's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X10,5,11,6 X14,3,15,4 X20,11,5,12 X18,13,19,14 X12,19,13,20 X2,9,3,10 X8,15,9,16 | 
| Gauss code | {1, -9, 5, -3}, {4, -1, 2, -10, 9, -4, 6, -8, 7, -5, 10, -2, 3, -7, 8, -6} | 
| A Braid Representative | |||||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



