L10n1: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 1 | |
k = 1 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-3:-4,-1,2,5,-9,4,-6,8,-10,-2,3,9,-7,6,-8,7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-3:-4,-1,2,5,-9,4,-6,8,-10,-2,3,9,-7,6,-8,7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 41: | Line 47: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
||
| Line 56: | Line 62: | ||
-7, 6, -8, 7}]</nowiki></pre></td></tr> |
-7, 6, -8, 7}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -2, -1, -2, -1, -2, 3, -2, 3, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10n1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, NonAlternating, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(13/2) 2 2 4 3 3 2 |
|||
q - ----- + ---- - ---- + ---- - ---- + ------- - 2 Sqrt[q] + |
q - ----- + ---- - ---- + ---- - ---- + ------- - 2 Sqrt[q] + |
||
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
| Line 67: | Line 75: | ||
3/2 |
3/2 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, NonAlternating, 1]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -20 -16 2 4 2 3 4 |
||
-q - q + q + --- + --- + --- + -- - q |
-q - q + q + --- + --- + --- + -- - q |
||
14 12 10 8 |
14 12 10 8 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, NonAlternating, 1]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 |
||
a 4 a 4 a a 3 5 7 3 |
a 4 a 4 a a 3 5 7 3 |
||
- - ---- + ---- - -- + 3 a z - 11 a z + 7 a z - a z + 4 a z - |
- - ---- + ---- - -- + 3 a z - 11 a z + 7 a z - a z + 4 a z - |
||
| Line 80: | Line 88: | ||
3 3 5 3 5 3 5 5 5 3 7 |
3 3 5 3 5 3 5 5 5 3 7 |
||
12 a z + 5 a z + a z - 6 a z + a z - a z</nowiki></pre></td></tr> |
12 a z + 5 a z + a z - 6 a z + a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, NonAlternating, 1]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 |
||
2 4 6 8 a 4 a 4 a a 3 |
2 4 6 8 a 4 a 4 a a 3 |
||
1 + 4 a + 7 a + 4 a + a - - - ---- - ---- - -- + 4 a z + 16 a z + |
1 + 4 a + 7 a + 4 a + a - - - ---- - ---- - -- + 4 a z + 16 a z + |
||
| Line 97: | Line 105: | ||
6 6 7 3 7 5 7 2 8 4 8 |
6 6 7 3 7 5 7 2 8 4 8 |
||
a z - 2 a z - 4 a z - 2 a z - a z - a z</nowiki></pre></td></tr> |
a z - 2 a z - 4 a z - 2 a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, NonAlternating, 1]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 2 1 2 1 2 |
||
-- + -- + ------ + ------ + ------ + ----- + ------ + ----- + ----- + |
-- + -- + ------ + ------ + ------ + ----- + ------ + ----- + ----- + |
||
4 2 14 5 12 4 10 4 8 4 10 3 8 3 8 2 |
4 2 14 5 12 4 10 4 8 4 10 3 8 3 8 2 |
||
Revision as of 18:24, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X13,2,14,3 |
| Gauss code | {1, 10, -5, -3}, {-4, -1, 2, 5, -9, 4, -6, 8, -10, -2, 3, 9, -7, 6, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u v^5+2 u v^4-2 u v^3-2 v^2+2 v-1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{2}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{5/2}}+q^{3/2}-\frac{3}{q^{3/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7-a^7 z^{-1} +z^5 a^5+5 z^3 a^5+7 z a^5+4 a^5 z^{-1} -z^7 a^3-6 z^5 a^3-12 z^3 a^3-11 z a^3-4 a^3 z^{-1} +z^5 a+4 z^3 a+3 z a+a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^2-a^8+2 a^7 z^3-3 a^7 z+a^7 z^{-1} +a^6 z^6-4 a^6 z^4+8 a^6 z^2-4 a^6+2 a^5 z^7-10 a^5 z^5+19 a^5 z^3-15 a^5 z+4 a^5 z^{-1} +a^4 z^8-2 a^4 z^6-6 a^4 z^4+15 a^4 z^2-7 a^4+4 a^3 z^7-19 a^3 z^5+27 a^3 z^3-16 a^3 z+4 a^3 z^{-1} +a^2 z^8-2 a^2 z^6-6 a^2 z^4+11 a^2 z^2-4 a^2+2 a z^7-9 a z^5+10 a z^3-4 a z+a z^{-1} +z^6-4 z^4+3 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



