L11a461: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 16: Line 16:
k = 461 |
k = 461 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:4,-1,7,-6,8,-9,10,-5:9,-2,3,-4,5,-3,11,-7,6,-8/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:4,-1,7,-6,8,-9,10,-5:9,-2,3,-4,5,-3,11,-7,6,-8/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 50: Line 50:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 461]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 461]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>

Latest revision as of 02:34, 3 September 2005

L11a460.gif

L11a460

L11a462.gif

L11a462

L11a461.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a461 at Knotilus!


Link Presentations

[edit Notes on L11a461's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X18,15,19,16 X16,6,17,5 X12,18,5,17 X8,22,9,21 X20,8,21,7 X22,10,13,9 X10,14,11,13 X2,11,3,12 X4,20,1,19
Gauss code {1, -10, 2, -11}, {4, -1, 7, -6, 8, -9, 10, -5}, {9, -2, 3, -4, 5, -3, 11, -7, 6, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a461 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-12} -z^2 a^{-12} +3 z^5 a^{-11} -2 z^3 a^{-11} +6 z^6 a^{-10} -8 z^4 a^{-10} +6 z^2 a^{-10} -2 a^{-10} +7 z^7 a^{-9} -8 z^5 a^{-9} +2 z^3 a^{-9} +z a^{-9} +7 z^8 a^{-8} -11 z^6 a^{-8} +8 z^4 a^{-8} -6 z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} +5 z^9 a^{-7} -6 z^7 a^{-7} -4 z^5 a^{-7} +9 z^3 a^{-7} -8 z a^{-7} +2 a^{-7} z^{-1} +2 z^{10} a^{-6} +5 z^8 a^{-6} -29 z^6 a^{-6} +37 z^4 a^{-6} -24 z^2 a^{-6} -2 a^{-6} z^{-2} +9 a^{-6} +10 z^9 a^{-5} -33 z^7 a^{-5} +29 z^5 a^{-5} -z^3 a^{-5} -8 z a^{-5} +2 a^{-5} z^{-1} +2 z^{10} a^{-4} +2 z^8 a^{-4} -28 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +5 z^9 a^{-3} -19 z^7 a^{-3} +19 z^5 a^{-3} -5 z^3 a^{-3} +z a^{-3} +4 z^8 a^{-2} -16 z^6 a^{-2} +16 z^4 a^{-2} -2 z^2 a^{-2} -2 a^{-2} +z^7 a^{-1} -3 z^5 a^{-1} +z^3 a^{-1} } (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ).   
\ r
  \  
j \
-3-2-1012345678χ
21           11
19          31-2
17         4  4
15        63  -3
13       84   4
11      87    -1
9     87     1
7    58      3
5   58       -3
3  37        4
1 13         -2
-1 3          3
-31           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a460.gif

L11a460

L11a462.gif

L11a462