L10n44: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 16: Line 16:
k = 44 |
k = 44 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-6,7,-5,-3:3,-1,-2,6,-8,5,-4,9,-7,8,-10,2,-9,4/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-6,7,-5,-3:3,-1,-2,6,-8,5,-4,9,-7,8,-10,2,-9,4/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 46: Line 46:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 44]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 44]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>

Latest revision as of 02:36, 3 September 2005

L10n43.gif

L10n43

L10n45.gif

L10n45

L10n44.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n44 at Knotilus!


Link Presentations

[edit Notes on L10n44's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X6718 X13,20,14,7 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X19,14,20,15 X17,2,18,3
Gauss code {1, 10, -6, 7, -5, -3}, {3, -1, -2, 6, -8, 5, -4, 9, -7, 8, -10, 2, -9, 4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n44 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(u+v-1) (u v-u-v)}{u v} }[/math] (db)
Jones polynomial [math]\displaystyle{ -\frac{3}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{2}{\sqrt{q}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^7 (-z)+a^5 z^3+a^5 z+a^3 z^3+a^3 z+a^3 z^{-1} -2 a z-a z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^8 z^6-4 a^8 z^4+3 a^8 z^2+2 a^7 z^7-9 a^7 z^5+10 a^7 z^3-3 a^7 z+a^6 z^8-3 a^6 z^6+a^6 z^2+3 a^5 z^7-13 a^5 z^5+15 a^5 z^3-5 a^5 z+a^4 z^8-4 a^4 z^6+5 a^4 z^4-3 a^4 z^2+a^3 z^7-4 a^3 z^5+5 a^3 z^3-a^3 z^{-1} +a^2 z^4-a^2 z^2+a^2+2 a z-a z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
0       22
-2      110
-4     21 1
-6    22  0
-8   11   0
-10  12    1
-12 11     0
-14 1      1
-161       -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n43.gif

L10n43

L10n45.gif

L10n45