L10n1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 16: Line 16:
k = 1 |
k = 1 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-3:-4,-1,2,5,-9,4,-6,8,-10,-2,3,9,-7,6,-8,7/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-3:-4,-1,2,5,-9,4,-6,8,-10,-2,3,9,-7,6,-8,7/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 47: Line 47:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>

Latest revision as of 02:55, 3 September 2005

L10a174.gif

L10a174

L10n2.gif

L10n2

L10n1.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n1 at Knotilus!


Link Presentations

[edit Notes on L10n1's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,19,12,18 X17,5,18,20 X19,13,20,12 X9,16,10,17 X13,2,14,3
Gauss code {1, 10, -5, -3}, {-4, -1, 2, 5, -9, 4, -6, 8, -10, -2, 3, 9, -7, 6, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L10n1 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{-u v^5+2 u v^4-2 u v^3-2 v^2+2 v-1}{\sqrt{u} v^{5/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ \frac{2}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{5/2}}+q^{3/2}-\frac{3}{q^{3/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z a^7-a^7 z^{-1} +z^5 a^5+5 z^3 a^5+7 z a^5+4 a^5 z^{-1} -z^7 a^3-6 z^5 a^3-12 z^3 a^3-11 z a^3-4 a^3 z^{-1} +z^5 a+4 z^3 a+3 z a+a z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^8 z^2-a^8+2 a^7 z^3-3 a^7 z+a^7 z^{-1} +a^6 z^6-4 a^6 z^4+8 a^6 z^2-4 a^6+2 a^5 z^7-10 a^5 z^5+19 a^5 z^3-15 a^5 z+4 a^5 z^{-1} +a^4 z^8-2 a^4 z^6-6 a^4 z^4+15 a^4 z^2-7 a^4+4 a^3 z^7-19 a^3 z^5+27 a^3 z^3-16 a^3 z+4 a^3 z^{-1} +a^2 z^8-2 a^2 z^6-6 a^2 z^4+11 a^2 z^2-4 a^2+2 a z^7-9 a z^5+10 a z^3-4 a z+a z^{-1} +z^6-4 z^4+3 z^2-1 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-5-4-3-2-10123χ
4        1-1
2       1 1
0      11 0
-2    131  1
-4    22   0
-6   32    1
-8 112     2
-10 22      0
-12 1       1
-141        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a174.gif

L10a174

L10n2.gif

L10n2