Upload Queues: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 9: Line 9:
]
]
</pre>
</pre>
and then issue the command <code>ProcessKnotAtlasUploadQueue["YourDataRobot Queue"]</code>.
and then issue the command <code>ProcessKnotAtlasUploadQueue["YourDataRobot Queue"]</code>. Options <code>Repeat->numberOfRepeats</code> (defaults to infinity) and <code>Timeout->numberOfSeconds</code> (defaults to 12 hours) can be used to control how many items will be processed, and the maximum amount of time spent on each.


The queue pages should contain one line for each task, in the form
The queue pages should contain one line for each task, in the form

Revision as of 18:31, 30 May 2006

This page keeps track of the progress of various robots uploading data to the KnotAtlas.

If you look at the source of this page, you'll see a line that says

{{:ScottDataRobot Queue}}

This line 'transcludes' the page ScottDataRobot Queue, showing its contents here. You can edit it to control the ScottDataRobot. You can create new queues by creating a new page in the same format. There's no need to transclude it here, but perhaps you should, so it's easy to see what's going on. To start uploading data in a queue, say "YourDataRobot Queue", you'll need to login, using something like

CreateWikiConnection[
  "http://katlas.math.toronto.edu/w/index.php",
  "YourDataRobot",
  "password"
]

and then issue the command ProcessKnotAtlasUploadQueue["YourDataRobot Queue"]. Options Repeat->numberOfRepeats (defaults to infinity) and Timeout->numberOfSeconds (defaults to 12 hours) can be used to control how many items will be processed, and the maximum amount of time spent on each.

The queue pages should contain one line for each task, in the form

*"Invariant Name", "Mathematica expression that evaluates to a list of knots"

The expression evaluating to a list of knots is subjected a very strict sanity check before it's evaluated, to protect against malicious code. At the moment, all you can use is AllKnots, AllLink, and Take. In particular, you can't write the presumably quite useful Select[AllKnots[14], BraidIndex[#]<=4&].

ScottDataRobot Queue

  • "Dowker-Thistlethwaite Code", "AllKnots[13]"
  • "Dowker-Thistlethwaite Code", "AllKnots[14]"
  • "Dowker-Thistlethwaite Code", "AllKnots[15]"
  • "Dowker-Thistlethwaite Code", "AllKnots[16]"
  • "HOMFLYPT", "AllKnots[13]"
  • "HOMFLYPT", "AllKnots[14]"
  • "HOMFLYPT", "AllKnots[15]"
  • "Rational Khovanov Polynomial", "AllKnots[13, NonAlternating]"
  • "Rational Khovanov Polynomial", "AllKnots[14, NonAlternating]"
  • "Rational Khovanov Polynomial", "AllKnots[15, NonAlternating]"
  • "Kauffman", "AllKnots[13]"
  • "Kauffman", "AllKnots[14]"
  • "Alexander", "AllKnots[13]"
  • "Alexander", "AllKnots[14]"
  • "Alexander", "AllKnots[15]"
  • "Signature", "AllKnots[13]"
  • "Determinant", "AllKnots[13]"

Completed Work

  • "Rational Khovanov Polynomial", "AllKnots[12, NonAlternating]"
  • "Kauffman", "AllKnots[12]"
  • "HOMFLYPT", "AllKnots[12]"
  • "HOMFLYPT", "TorusKnots[17]"
  • "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "Alexander", "AllKnots[12]"
  • "QuantumInvariant/A1/6", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/6", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A3/1,0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/8", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A3/0,1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "Signature", "AllKnots[12]"
  • "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
  • "QuantumInvariant/A3/1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
  • "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A2/2,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/D4/0,1,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=5&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "Determinant", "AllKnots[12]"
  • "QuantumInvariant/A1/7", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/B2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=6&]"
  • "QuantumInvariant/D4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A2/1,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/D4/1,0,0,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/5", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=7&]"
  • "QuantumInvariant/A3/0,1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A3/1,0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/G2/0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/5", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A2/2,0", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/B2/0,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/G2/1,0", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=4&]"
  • "QuantumInvariant/A1/4", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A1/3", "Select[AllKnots[{3,11}],First[BR[#]]<=2&]"
  • "QuantumInvariant/A2/1,1", "Select[AllKnots[{3,11}],First[BR[#]]<=3&]"
  • "QuantumInvariant/A1/2", "Select[AllKnots[{3,11}],First[BR[#]]<=6&]"