Article:Math.QA/9907166/unidentified-references: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<pre> |
<pre> |
||
R.~Borcherds, {Vertex algebras, Kac-Moody algebras, and the Monster}, Proc. Natl. Acad. Sci. USA {\bf 83} (1986) 3068--3071. |
|||
I.~B. Frenkel, {\em Two constructions of affine algebras and boson-fermion correspondence}, J. Funct. Anal. {\bf 44} (1981) 259--327. |
|||
I.~B. Frenkel, {\em Kac-Moody algebras and dual resonance models}, in {\em Applications of Group Theory in Physics and Mathematical Physics}, eds. M. Flato et al, Lect. in Appl. Math. {\bf 21}, 325--353. AMS, Providence, 1985. |
|||
I.~B. Frenkel, {\em Lectures on infinite dimensional Lie algebras}, Yale Univ, 1986. |
|||
I.~B. Frenkel and V.~G. Kac, {\em Basic representations of affine Lie algebras and dual resonance models}, Invent. Math. {\bf 62} (1980) 23--66. |
|||
I.~B.~Frenkel, J.~Lepowsky and A.~Meurman, {\em Vertex operator algebras and the Monster}, Academic Press, New York, 1988. |
|||
I.~Grojnowski, {\em Instantons and affine algebras I: the Hilbert scheme and vertex operators}, Math. Res. Lett. {\bf 3} (1996) 275--291. |
|||
N.~Jing, {\em Vertex operators, symmetric functions and the spin group $\Gamma_n$}, J. Alg. {\bf 138} (1991) 340--398. |
|||
N.~Jing, {\em Vertex operators and Hall-Littlewood symmetric functions}, Adv. in Math. {\bf 87} (1991) 226--248. |
|||
N.~Jing, {\em Boson-fermion correspondence for Hall-Littlewood polynomials}, J. Math. Phys. {\bf 36} (1995) 7073--7080. |
|||
I.~G. Macdonald, {\em Polynomial functors and wreath products}, J. Pure Appl. Alg. {\bf 18} (1980) 173--204. |
|||
I.~G. Macdonald, {\em Symmetric functions and Hall polynomials}, 2nd ed., Clarendon Press, Oxford, 1995. |
|||
J.~McKay, {\em Graphs, singularities and finite groups}, Proc. Sympos. Pure Math. {\bf 37}, Amer. Math. Soc, Providence, RI (1980) 183--186. |
|||
R.~Moody, S.~Rao and T.~Yokonuma, {\em Toroidal Lie algebras and vertex representations}, Geom. Dedica. {\bf 35} (1990) 283--307. |
|||
H. Nakajima, {\em Lectures on Hilbert schemes of points on surfaces}, 1996. |
|||
G.~Segal, {\em Unitary representations of some infinite dimensional groups}, Commun. Math. Phys. {\bf 80} (1981) 301--342. |
|||
G.~Segal, {\em Equivariant K-theory and symmetric products}, 1996 preprint (unpublished). |
|||
R.~Steinberg, {\em Finite subgroups of $SU_2$, Dynkin diagrams and affine Coxeter elements}, Pacif. J. Math. {\bf 118} (1985) 587--598. |
|||
A.~Zelevinsky, {\em Representations of finite classical groups, A Hopf algebra approach}. Lecture Notes in Mathematics, {\bf 869}. Springer-Verlag, Berlin-New York, 1981. |
|||
</pre> |
</pre> |
Latest revision as of 04:17, 17 September 2006
R.~Borcherds, {Vertex algebras, Kac-Moody algebras, and the Monster}, Proc. Natl. Acad. Sci. USA {\bf 83} (1986) 3068--3071. I.~B. Frenkel, {\em Two constructions of affine algebras and boson-fermion correspondence}, J. Funct. Anal. {\bf 44} (1981) 259--327. I.~B. Frenkel, {\em Kac-Moody algebras and dual resonance models}, in {\em Applications of Group Theory in Physics and Mathematical Physics}, eds. M. Flato et al, Lect. in Appl. Math. {\bf 21}, 325--353. AMS, Providence, 1985. I.~B. Frenkel, {\em Lectures on infinite dimensional Lie algebras}, Yale Univ, 1986. I.~B. Frenkel and V.~G. Kac, {\em Basic representations of affine Lie algebras and dual resonance models}, Invent. Math. {\bf 62} (1980) 23--66. I.~B.~Frenkel, J.~Lepowsky and A.~Meurman, {\em Vertex operator algebras and the Monster}, Academic Press, New York, 1988. I.~Grojnowski, {\em Instantons and affine algebras I: the Hilbert scheme and vertex operators}, Math. Res. Lett. {\bf 3} (1996) 275--291. N.~Jing, {\em Vertex operators, symmetric functions and the spin group $\Gamma_n$}, J. Alg. {\bf 138} (1991) 340--398. N.~Jing, {\em Vertex operators and Hall-Littlewood symmetric functions}, Adv. in Math. {\bf 87} (1991) 226--248. N.~Jing, {\em Boson-fermion correspondence for Hall-Littlewood polynomials}, J. Math. Phys. {\bf 36} (1995) 7073--7080. I.~G. Macdonald, {\em Polynomial functors and wreath products}, J. Pure Appl. Alg. {\bf 18} (1980) 173--204. I.~G. Macdonald, {\em Symmetric functions and Hall polynomials}, 2nd ed., Clarendon Press, Oxford, 1995. J.~McKay, {\em Graphs, singularities and finite groups}, Proc. Sympos. Pure Math. {\bf 37}, Amer. Math. Soc, Providence, RI (1980) 183--186. R.~Moody, S.~Rao and T.~Yokonuma, {\em Toroidal Lie algebras and vertex representations}, Geom. Dedica. {\bf 35} (1990) 283--307. H. Nakajima, {\em Lectures on Hilbert schemes of points on surfaces}, 1996. G.~Segal, {\em Unitary representations of some infinite dimensional groups}, Commun. Math. Phys. {\bf 80} (1981) 301--342. G.~Segal, {\em Equivariant K-theory and symmetric products}, 1996 preprint (unpublished). R.~Steinberg, {\em Finite subgroups of $SU_2$, Dynkin diagrams and affine Coxeter elements}, Pacif. J. Math. {\bf 118} (1985) 587--598. A.~Zelevinsky, {\em Representations of finite classical groups, A Hopf algebra approach}. Lecture Notes in Mathematics, {\bf 869}. Springer-Verlag, Berlin-New York, 1981.