3 1: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
The trefoil knot has only three crossings! |
The trefoil knot has only three crossings! |
||
<nowiki> |
|||
<mma-splice> |
<mma-splice> |
||
<in> |
<in> |
||
| Line 8: | Line 9: | ||
</out> |
</out> |
||
</mma-splice> |
</mma-splice> |
||
</nowiki> |
|||
{{Template:Basic Knot Invariants| |
{{Template:Basic Knot Invariants| |
||
Revision as of 19:59, 29 July 2005
The trefoil knot has only three crossings!
<mma-splice> <in> 3+4 </in> <out> </out> </mma-splice>
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t+ t^{-1} -1 }[/math] |
| Conway polynomial | [math]\displaystyle{ z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 3, -2 } |
| Jones polynomial | [math]\displaystyle{ - q^{-4} + q^{-3} + q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^4+a^2 z^2+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^5 z+a^4 z^2-a^4+a^3 z+a^2 z^2-2 a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}-q^{12}+q^8+2 q^6+q^4+q^2 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{72}-q^{64}-q^{62}-q^{56}-2 q^{54}-q^{52}+q^{50}-q^{46}-2 q^{44}+2 q^{40}+q^{38}-q^{36}+2 q^{32}+2 q^{30}+q^{28}+2 q^{22}+2 q^{20}+q^{14}+q^{12}+q^{10} }[/math] |
Further Quantum Invariants
Further quantum knot invariants for 3_1.
The braid index of 3_1 is only 2, so it's easy to calculate lots of quantum invariants. A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^9+q^5+q^3+q }[/math] |
| 2 | [math]\displaystyle{ q^{24}-q^{20}-q^{18}-q^{16}+q^{10}+q^8+q^6+q^4+q^2 }[/math] |
| 3 | [math]\displaystyle{ -q^{45}+q^{41}+q^{39}+q^{37}-q^{31}-q^{29}-q^{27}-q^{25}-q^{23}+q^{15}+q^{13}+q^{11}+q^9+q^7+q^5+q^3 }[/math] |
| 4 | [math]\displaystyle{ q^{72}-q^{68}-q^{66}-q^{64}+q^{58}+q^{56}+q^{54}+q^{52}+q^{50}-q^{42}-q^{40}-q^{38}-q^{36}-q^{34}-q^{32}-q^{30}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^6+q^4 }[/math] |
| 5 | [math]\displaystyle{ -q^{105}+q^{101}+q^{99}+q^{97}-q^{91}-q^{89}-q^{87}-q^{85}-q^{83}+q^{75}+q^{73}+q^{71}+q^{69}+q^{67}+q^{65}+q^{63}-q^{53}-q^{51}-q^{49}-q^{47}-q^{45}-q^{43}-q^{41}-q^{39}-q^{37}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^7+q^5 }[/math] |
| 6 | [math]\displaystyle{ q^{144}-q^{140}-q^{138}-q^{136}+q^{130}+q^{128}+q^{126}+q^{124}+q^{122}-q^{114}-q^{112}-q^{110}-q^{108}-q^{106}-q^{104}-q^{102}+q^{92}+q^{90}+q^{88}+q^{86}+q^{84}+q^{82}+q^{80}+q^{78}+q^{76}-q^{64}-q^{62}-q^{60}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-q^{44}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^6 }[/math] |
| 8 | [math]\displaystyle{ q^{240}-q^{236}-q^{234}-q^{232}+q^{226}+q^{224}+q^{222}+q^{220}+q^{218}-q^{210}-q^{208}-q^{206}-q^{204}-q^{202}-q^{200}-q^{198}+q^{188}+q^{186}+q^{184}+q^{182}+q^{180}+q^{178}+q^{176}+q^{174}+q^{172}-q^{160}-q^{158}-q^{156}-q^{154}-q^{152}-q^{150}-q^{148}-q^{146}-q^{144}-q^{142}-q^{140}+q^{126}+q^{124}+q^{122}+q^{120}+q^{118}+q^{116}+q^{114}+q^{112}+q^{110}+q^{108}+q^{106}+q^{104}+q^{102}-q^{86}-q^{84}-q^{82}-q^{80}-q^{78}-q^{76}-q^{74}-q^{72}-q^{70}-q^{68}-q^{66}-q^{64}-q^{62}-q^{60}-q^{58}+q^{40}+q^{38}+q^{36}+q^{34}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8 }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{14}-q^{12}+q^8+2 q^6+q^4+q^2 }[/math] |
| 0,2 | [math]\displaystyle{ q^{34}+q^{32}+q^{30}-q^{28}-2 q^{26}-3 q^{24}-3 q^{22}-q^{20}+2 q^{16}+2 q^{14}+3 q^{12}+2 q^{10}+2 q^8+q^6+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ -q^{14}-q^{12}+q^8+2 q^6+q^4+q^2 }[/math] |
| 1,1 | [math]\displaystyle{ q^{36}-2 q^{24}-2 q^{22}-3 q^{20}-2 q^{18}+2 q^{14}+3 q^{12}+4 q^{10}+4 q^8+2 q^6+q^4 }[/math] |
| 2,0 | [math]\displaystyle{ q^{34}+q^{32}+q^{30}-q^{28}-2 q^{26}-3 q^{24}-3 q^{22}-q^{20}+2 q^{16}+2 q^{14}+3 q^{12}+2 q^{10}+2 q^8+q^6+q^4 }[/math] |
| 3,0 | [math]\displaystyle{ -q^{60}-q^{58}-q^{56}+2 q^{52}+3 q^{50}+4 q^{48}+3 q^{46}+2 q^{44}-q^{42}-3 q^{40}-5 q^{38}-5 q^{36}-5 q^{34}-4 q^{32}-2 q^{30}-q^{28}+q^{26}+2 q^{24}+3 q^{22}+3 q^{20}+4 q^{18}+3 q^{16}+3 q^{14}+2 q^{12}+2 q^{10}+q^8+q^6 }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,1 | [math]\displaystyle{ -q^{19}-q^{17}-q^{15}+q^{11}+2 q^9+2 q^7+q^5+q^3 }[/math] |
| 0,1,0 | [math]\displaystyle{ q^{30}-q^{24}-2 q^{22}-2 q^{20}-2 q^{18}+q^{14}+3 q^{12}+3 q^{10}+3 q^8+q^6+q^4 }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{19}-q^{17}-q^{15}+q^{11}+2 q^9+2 q^7+q^5+q^3 }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{48}+q^{38}+q^{36}+q^{34}-q^{32}-3 q^{30}-5 q^{28}-6 q^{26}-6 q^{24}-3 q^{22}+q^{20}+4 q^{18}+7 q^{16}+8 q^{14}+7 q^{12}+5 q^{10}+2 q^8+q^6 }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,1 | [math]\displaystyle{ -q^{24}-q^{22}-q^{20}-q^{18}+q^{14}+2 q^{12}+2 q^{10}+2 q^8+q^6+q^4 }[/math] |
| 0,1,0,0 | [math]\displaystyle{ q^{40}+q^{38}+q^{36}-q^{32}-3 q^{30}-4 q^{28}-4 q^{26}-3 q^{24}-q^{22}+q^{20}+4 q^{18}+4 q^{16}+5 q^{14}+4 q^{12}+3 q^{10}+q^8+q^6 }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{24}-q^{22}-q^{20}-q^{18}+q^{14}+2 q^{12}+2 q^{10}+2 q^8+q^6+q^4 }[/math] |
A5 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,0,1 | [math]\displaystyle{ -q^{29}-q^{27}-q^{25}-q^{23}-q^{21}+q^{17}+2 q^{15}+2 q^{13}+2 q^{11}+2 q^9+q^7+q^5 }[/math] |
| 1,0,0,0,0 | [math]\displaystyle{ -q^{29}-q^{27}-q^{25}-q^{23}-q^{21}+q^{17}+2 q^{15}+2 q^{13}+2 q^{11}+2 q^9+q^7+q^5 }[/math] |
A6 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,0,0,1 | [math]\displaystyle{ -q^{34}-q^{32}-q^{30}-q^{28}-q^{26}-q^{24}+q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+2 q^{10}+q^8+q^6 }[/math] |
| 1,0,0,0,0,0 | [math]\displaystyle{ -q^{34}-q^{32}-q^{30}-q^{28}-q^{26}-q^{24}+q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+2 q^{10}+q^8+q^6 }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{30}-q^{24}+q^{14}+q^{12}+q^{10}+q^8+q^6+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ q^{48}-q^{38}-q^{36}-q^{34}-q^{32}-q^{30}-q^{28}+q^{22}+q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6 }[/math] |
B3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^{72}-q^{58}-q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-q^{44}-q^{42}+q^{34}+2 q^{30}+q^{28}+2 q^{26}+q^{24}+2 q^{22}+q^{20}+2 q^{18}+q^{14}+q^{10} }[/math] |
B4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{96}-q^{78}-q^{74}-q^{70}-q^{68}-q^{66}-q^{64}-q^{62}-q^{60}-q^{58}-q^{54}+q^{46}+2 q^{42}+2 q^{38}+q^{36}+2 q^{34}+q^{32}+2 q^{30}+q^{28}+2 q^{26}+2 q^{22}+q^{18}+q^{14} }[/math] |
B5 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0,0 | [math]\displaystyle{ q^{120}-q^{98}-q^{94}-q^{90}-q^{86}-q^{84}-q^{82}-q^{80}-q^{78}-q^{76}-q^{74}-q^{70}-q^{66}+q^{58}+2 q^{54}+2 q^{50}+2 q^{46}+q^{44}+2 q^{42}+q^{40}+2 q^{38}+q^{36}+2 q^{34}+2 q^{30}+2 q^{26}+q^{22}+q^{18} }[/math] |
C3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ -q^{42}-q^{34}-q^{32}-q^{24}+q^{20}+2 q^{18}+q^{16}+q^{14}+q^{12}+2 q^{10}+q^8+q^6 }[/math] |
C4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ -q^{54}-q^{44}-q^{42}-q^{40}-q^{32}-q^{30}+q^{26}+2 q^{24}+2 q^{22}+q^{20}+q^{18}+q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^8 }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{72}-q^{64}-q^{62}+2 q^{56}+4 q^{54}+5 q^{52}+4 q^{50}+3 q^{48}-q^{46}-5 q^{44}-9 q^{42}-13 q^{40}-14 q^{38}-13 q^{36}-9 q^{34}-4 q^{32}+2 q^{30}+7 q^{28}+12 q^{26}+12 q^{24}+14 q^{22}+11 q^{20}+9 q^{18}+6 q^{16}+4 q^{14}+q^{12}+q^{10} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{42}-q^{34}-q^{32}-2 q^{30}-2 q^{28}-2 q^{26}-q^{24}+q^{20}+2 q^{18}+3 q^{16}+3 q^{14}+3 q^{12}+2 q^{10}+q^8+q^6 }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{144}-q^{126}+q^{122}-q^{116}+2 q^{112}+q^{110}-q^{108}+2 q^{104}+q^{102}-q^{98}-q^{96}+q^{94}-2 q^{90}-2 q^{88}-q^{86}-q^{84}-2 q^{82}-3 q^{80}-2 q^{78}-2 q^{76}-2 q^{74}-2 q^{72}-2 q^{70}-q^{68}-q^{64}-q^{62}+q^{60}+q^{58}+q^{56}+2 q^{54}+q^{52}+2 q^{50}+3 q^{48}+2 q^{46}+2 q^{44}+3 q^{42}+2 q^{40}+2 q^{38}+3 q^{36}+2 q^{34}+q^{32}+2 q^{30}+q^{28}+q^{26}+q^{24}+q^{18} }[/math] |
| 1,0 | [math]\displaystyle{ q^{72}-q^{64}-q^{62}-q^{56}-2 q^{54}-q^{52}+q^{50}-q^{46}-2 q^{44}+2 q^{40}+q^{38}-q^{36}+2 q^{32}+2 q^{30}+q^{28}+2 q^{22}+2 q^{20}+q^{14}+q^{12}+q^{10} }[/math] |
.
Computer Talk
The above data is available with the Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["3 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t+ t^{-1} -1 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ - q^{-4} + q^{-3} + q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^4+a^2 z^2+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^5 z+a^4 z^2-a^4+a^3 z+a^2 z^2-2 a^2 }[/math] |