The Jones Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:
<!--$$ Jones[Knot[6, 2]][q] $$-->
<!--$$ Jones[Knot[6, 2]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<math>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code>
In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code>
Out[1]=</tt> <math>q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}</math>
Out[1]=</tt> <math>q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}</math>
<!--END-->
<!--END-->
Line 17: Line 17:
<!--$$ Jones[Knot[9, 46]][q] $$-->
<!--$$ Jones[Knot[9, 46]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<math>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code>
In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code>
Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
<!--END-->
<!--END-->

Revision as of 18:08, 22 August 2005

The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:

In[1]:= Jones[Knot[6, 2]][q] Out[1]=

Again:

In[1]:= Jones[Knot[6, 1]][q]

Out[1]=

In[2]:= Jones[Knot[9, 46]][q] Out[2]=

Again:

In[2]:= Jones[Knot[6, 1]][q]

Out[2]=