The Jones Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:


<!--$$ Jones[Knot[6, 2]][q] $$-->
<!--$$ Jones[Knot[6, 3]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code>
<tt>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code>
Line 8: Line 8:
<!--END-->
<!--END-->


<!--$$ Jones[Knot[9, 46]][q] $$-->
<!--$$ Jones[Knot[9, 48]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code>
<tt>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code>


<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
<!--END-->

<!--$$ Jones[Knot[10, 112]][q] $$-->
<!--END-->
<!--END-->

Revision as of 18:12, 22 August 2005

The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:

In[1]:= Jones[Knot[6, 2]][q]

Out[1]=

In[2]:= Jones[Knot[9, 46]][q]

Out[2]=