The Jones Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though: |
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though: |
||
<!--$$ Jones[Knot[6, |
<!--$$ Jones[Knot[6, 3]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
<tt>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code> |
<tt>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code> |
||
Line 8: | Line 8: | ||
<!--END--> |
<!--END--> |
||
<!--$$ Jones[Knot[9, |
<!--$$ Jones[Knot[9, 48]][q] $$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
<tt>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code> |
<tt>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code> |
||
<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math> |
<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math> |
||
<!--END--> |
|||
<!--$$ Jones[Knot[10, 112]][q] $$--> |
|||
<!--END--> |
<!--END--> |
Revision as of 18:12, 22 August 2005
The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
In[1]:= Jones[Knot[6, 2]][q]
Out[1]=
In[2]:= Jones[Knot[9, 46]][q]
Out[2]=